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Abstract

The prosody of currently available speech synthesis systems
can be unnatural due to the systems only having access to the
text, possibly enriched by linguistic information such as part-
of-speech tags and parse trees. We show that incorporating
a BERT model in an RNN-based speech synthesis model —
where the BERT model is pretrained on large amounts of un-
labeled data, and fine-tuned to the speech domain — improves
prosody. Additionally, we propose a way of handling arbitrar-
ily long sequences with BERT. Our findings indicate that small
BERT models work better than big ones, and that fine-tuning
the BERT part of the model is pivotal for getting good results.

1. Introduction

The voice quality of current text-to-speech (TTS) synthesis is
getting close to the quality of natural human speech. In terms
of prosody, however, the speech that TTS systems produce can
still be unnatural along a number of different dimensions in-
cluding intonation which conveys semantics and emotion. One
of the reasons for this is that the input to speech synthesis sys-
tems typically consists of only text, read as characters or words
[1, 2]. The input is usually enriched by information about syn-
tax, using taggers and parsers [3, 4, 5]. As such, no information
about semantics or world knowledge is available to these mod-
els, as this is not inferable from just the text. Furthermore, when
input is enriched by syntax information, errors made by the al-
gorithms providing this information can propagate through the
system, which may degrade, rather than improve, synthesis.

We present CHiVE-BERT, an extension of the Clockwork
Hierarchical Variational autoEncoder (CHiVE) prosody model
that incorporates a Bidirectional Encoder Representations from
Transformers (BERT) network [6], trained first on text, and then
fine-tuned on a speech synthesis task — a prosody generation
task in particular. The motivation for incorporating a BERT
model in our overall model is twofold: i) BERT provides repre-
sentations that have been proven to embody syntactic informa-
tion in a more robust way than traditional parsing and tagging
[7, 8, 9]; ii) BERT models can provide useful cues beyond syn-
tax, such as word semantics and world knowledge [10].

It has been shown that BERT models can incorporate syn-
tactic information in text-only domain [7, 8]. While the BERT
model only implicitly captures the linguistic structure of the in-
put text, we show that its output representations can be used to
replace features encoding this syntactic information explicitly.

The BERT models in the CHiVE-BERT system are pre-
trained on a language modeling task, which is known to lead to
semantic information being incorporated into the model [7, 6]
We find this enables CHiVE-BERT to learn to correctly pro-
nounce longer noun compounds, such as ‘diet cat food’, as the
knowledge that this is more likely to be interpreted as ‘(diet
(cat food))’ rather than ‘((diet cat) food)’, is incorporated into
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the pretrained model, whereas it is typically hard for standard
parsing methods to resolve this ambiguity. Sentences that are
challenging linguistically (e.g., because they are long or other-
wise difficult to parse) can benefit from the new approach based
on BERT representations rather than explicit features, as any
errors in the parse information no longer impair performance.

We show that human raters favour CHiVE-BERT over a
current state-of-the-art model on three datasets designed to
highlight different prosodic phenomena. Additionally, we pro-
pose a way of handling long sequences with BERT (which has
fixed-length inputs and outputs), so it can deal with arbitrarily
long input.

2. Related work

Using BERT in TTS There are existing attempts to use BERT
in TTS. Both [11] and [12] employ pretrained BERT models
with a Tacotron 2 type TTS models, and show gains in mean
opinion scores. [13], again, use pretrained BERT, but only in
the front-end text processing components of TTS. They show
improved accuracy in the front-end but do not evaluate the final
speech quality. In [11, 13], large BERT models are used: 12-
layers, and 768 hidden units in each layer (in [12] the size of
the BERT models are not specified). In contrast, our proposed
model uses a smaller model (only 2 layers, hidden state size
256). More importantly, instead of using the pretrained BERT
model as is, we propose to update parameters of the BERT net-
work itself while training our prosody model.

Handling arbitrarily long input with Transformers Perhaps
the simplest way of dealing with arbitrarily long input in a
Transformer model [14] — which has a fixed input length — is
to split the input into consecutive segments, and process these
segments separately [15]. An alternative approach is employed
in [16, 17], where the input, again, is split into consecutive seg-
ments, that the model now recurses over. During evaluation, the
Transformer model thus has an input size twice as large as it
would usually have.

Different to the approaches described above, but similar to,
e.g., [18] we propose to split the input into overlapping seg-
ments. This is different from local attention [19, 20, 21] as the
Transformer architecture itself is unaltered in our case. For effi-
ciency reasons, we do not recurse over the multiple Transformer
outputs [18]. We aggregate the output of overlapping windows
by selecting the representations that had most context (i.e. fur-
thest away from the start or end of the window, cf. §3.1.2). This
comes at the cost of losing the ability to model prosodic effects
spanning very long contexts. We motivate this choice by noting
that 1) though prosodic phenomena spanning very long contexts
can occur, we expect local context to be primarily important for
predicting prosodic features; ii) we expect the length of most in-
put sequences to be under the maximum input size of the BERT
model, both during fine-tuning and final inference.

http://dx.doi.org/10.21437/Interspeech.2020-1430
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Figure 1: Schematic overview of the CHiVE-BERT conditional
variational auto-encoder model at training time.

3. CHiVE-BERT

CHiVE-BERT extends the Clockwork Hierarchical Variational
autoEncoder (CHiVE) model described in [3]. The CHiVE
model is a conditional variational autoencoder (VAE) [22] with
inputs and outputs that are prosodic features, namely pitch (fun-
damental frequency Fo), energy (represented by the Oth cep-
stral coefficient c¢g) and phone durations (in number of frames).
The variational embedding represents the prosody of a sin-
gle utterance. Both the encoder and decoder are structured
as hierarchical recurrent neural networks (RNNs) where each
layer is clocked dynamically to the linguistic structure of a
given utterance. For example, if a particular syllable consists
of three phonemes, the encoder phoneme layer will consume
three phonemes before its output state is fed to the syllable
layer, whereas if the next syllable contains five phonemes, five
phonemes will be consumed. Both the encoder and decoder are
conditioned on features encoding information about, e.g., syl-
lable stress and part-of-speech (cf. §4.3 for more information
on these features). These features are fed to the model at the
appropriate linguistic layer by being appended to the state re-
ceived from the previous layer.

In CHiVE-BERT, the word-level features are replaced by Word-
Piece embeddings from a pretrained BERT model. This pre-
trained BERT model is fine-tuned as CHiVE-BERT is trained.
Figure 1 shows a high-level overview of CHiVE-BERT. The
preprocessor is a text-normalization front-end [23, 24], and is
not updated as part of the CHiVE-BERT training procedure. As
such, we will not elaborate on it further.

Figure 2 shows the details of the CHiVE-BERT encoder.
At the top (shown in red in the figure) is a syllable-rate RNN
which encodes an utterance. For each syllable in the utterance
it encodes 1) the prosodic features encoded frame by frame (by
the blue frame-level RNN in the lower left of the figure), 2) the
phone-level features encoded by the phoneme level RNN (in
purple, in the lower right), 3) syllable-level features 4) BERT
WordPiece embeddings [25], and 5) sentence-level features.
The last state of the syllable RNN is fed to the variational layer,
which computes a sentence prosody embedding from it.

Similar to the way it works in the encoder, the WordPiece
embeddings in the decoder are broadcasted as input to each syl-
lable of a given word, replacing the word-level features in the
original CHiVE model. The overall structure of the decoder
is somewhat different to that of the encoder to account for the
need to predict the number of frames in each phoneme. It is
fully described in [3] and not discussed further here for brevity.
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3.1. BERT model

The BERT model is run as part of the full model and gradients
flow all the way through the model, up until, but not includ-
ing, the WordPiece embedding lookup table. The input text
is split into WordPieces by the default BERT WordPiece tok-
enizer, and run through the Transformer graph, which outputs
an embedding for each WordPiece in the input. As we wish
to provide these embeddings to the syllable-level RNNs in the
encoder/decoder, which have no notion of WordPieces, the em-
bedding corresponding to the first WordPiece of each word is
selected to represent the word, and is presented to each RNN
(and replicated for each syllable, cf. Figure 2).

3.1.1. Freezing WordPiece embeddings after pretraining

We freeze the WordPiece embeddings of the model after pre-
training [26], as not all WordPieces observed during pretraining
might be observed (as often) during the fine-tuning stage. This
might cause discrepancies in the way the semantic space would
be updated during fine-tuning if the gradients would, in fact,
flow through it. If two WordPieces are close after pretraining,
but only one of them is observed frequently during fine-tuning,
they might end up being separated. This separation, however,
would not be informed by the fine-tuning process, but, rather,
by data imbalance.

3.1.2. Handling arbitrarily long input with BERT

While the RNN layers of the CHiVE-BERT model can han-
dle arbitrarily long input (memory permitting) as they unroll
dynamically, the BERT model has a fixed length m. We aug-
ment the BERT model to handle arbitrarily long sequences of
WordPieces by splitting a sequence wpi,wpz, ..., wp, into
windows of size m, if n > m, and presenting these windows
to the model as a mini-batch. The windows overlap by stride
size s, which we set to be (the floor of) half of the input size:
| (m — 2)/2]. Each window w;, for i € {0,1,..., [*F2=m7}
is defined as:

wi; = {START, WPi-541, WPi-542 - - s WPjs4+(m—2), E'ND}7

where wp; is the WordPiece at position ¢, and START and END
are start and end tokens, respectively. We introduce two new
tokens [BREAK] and [CONT]. The START token of the first
window is the standard [CLS] token, and [CONT] for any sub-
sequent window. The END token of the last window is the stan-
dard end-of-sequence token [SEP] (which can occur earlier in
the window, in which case it is followed by padding to fill up to
size m), and a [BREAK] token for any window before it.

To combine the [2+2=7] 4+ 1 overlapping windows of
length m to a sequence of length n again, we select the cen-
ter |s/2| WordPiece embeddings from every window, except
for the first one, where we start from index 0, and the last one,
where we end at the [ SEP ] token, and pad the remainder.

4. Experimental setup

Here we describe the way our experiments are set up.

4.1. CHiVE-BERT model

The CHiVE-BERT model is trained on 215,650 utterances (cor-
responding to about 228 hours of speech). A development set
of 3000 is employed to tune hyperparameters. The data was
curated to have good phonetic coverage, and was recorded un-
der studio conditions by 30 native US English speakers. While
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Figure 2: CHiVE-BERT encoder and variational layer. Circles represent blocks of RNN cells, rectangles represent vectors. Broadcast-
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some speakers are represented better than others, all speakers
are represented by a substantial number of utterances. Align-
ment, down to phoneme level, was done automatically.

The BERT part of the CHiVE-BERT model is trained on
the same corpus’ the publicly available BERTgsse model was
trained on? [6], using a dropout probability of 0.1 [27], Gaussian
Error Linear Unit (GELU) activations [28], hidden size 256,
intermediate size 1024, 4 attention heads, 2 hidden layers, and
a vocabulary size of 30,522. The model has an input size of 512
(min §3.1.2), i.e., it reads 512 WordPiece embeddings at once.

The internal size of the syllable-level RNN and of the sen-
tence prosody embedding (the output of the variational layer)
is 256. The internal size of both the frame-rate RNN and the
phone-rate RNN is 64 in the encoder, and 64 and 32, respec-
tively, in the decoder. We represent Fy and co values at 200Hz
(i.e., we use Sms frames). Adadelta optimization is used [29],
with a decay rate p = 0.95 and € = 10, and an initial learn-
ing rate of 0.05, exponentially decayed over 750,000 steps. All
networks are trained for 1M iterations, with a batch size of 4.

Asreported in, e.g., [30], the fine-tuning process is sensitive
to different initializations. We run 10 runs for each hyperparam-
eter setting considered, and report on the model performing best
on the development set.

4.2. Baseline

The baseline model is the prosody model currently used for
popular US English voices in the Google Assistant, described
in [3]. The capacity of this model (the number of parameters)
is lower than the capacity of the CHiVE-BERT model, as the
latter incorporates an extra Transformer network. It might be
considered fair, therefore, to compare the CHiVE-BERT model
to a version of the baseline that is similar in terms of capacity.
We found, however, in preliminary experiments, that increasing
the size of the hidden states, or number of RNN cells in any of
the layers decreased performance, as the models started to over-
fit. As such, the architecture of the baseline is tuned to yield
the highest performance in terms of MOS score, and hence is a
strong baseline to compare the CHiVE-BERT model against.

ISee https://github.com/google-research/bert.

2We also tried initializing from BERTgagE, itself in preliminary ex-
periments. However, we found that did not yield promising results, and
as it takes a long time to fine-tune, we left it out of our final experiments.
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4.3. Features

Both CHiVE-BERT and the baseline model have input features
describing the textual contents at the level of sentence, words
(only for the baseline), syllables and phonemes, following, e.g.,
[5]. The sentence-level features contain information about the
speaker and their gender. Word-level features contain informa-
tion about POS tags, dependency parse, phrase-level features
(indicating if the phrase is part of a question, statement), and
preceding or subsequent punctuation marks. At syllable level,
information such as number of phonemes and lexical stress is
represented. Lastly, the phoneme-level features contain infor-
mation about the position of the phoneme in the syllable, the
phoneme identity, and the number of phonemes in the syllable.
CHiVE-BERT has the same input features the baseline
model has, except for the features at word level, which are left
out and replaced by BERT representations as described in §3.°

4.4. WaveNet

We use two WaveNets [31]: one for our baseline, and one for
the CHiVE-BERT model. Both are trained on linguistic and
prosodic features, using a dataset containing 115,754 utterances
of speech for 9 speakers. They are trained on multiple speakers
because we found that even if the models are used to generate
speech for only one or two speakers as they are in our experi-
ments, training them on more speakers yields better results. The
only difference between the two WaveNets is that the one used
for the baseline does have access to features at word level, while
the one used for CHiVE-BERT does not, to prevent it from get-
ting potentially conflicting information between the BERT rep-
resentation and the (noisy) word-level linguistic features.

4.5. Evaluation

To evaluate the performance of CHiVE-BERT compared to the
baseline model we run 7-way side-by-side tests, where raters
indicate which audio sample they think sounds better on a scale
from -3 to +3, where the center of the scale means “no differ-
ence”. Every rater rates at most 6 samples, and every sample is

3In preliminary experiments, we also tried combining both word-
level linguistic features and BERT representations, but as the results
were not promising, we left out this setting in the final experiments.



Table 1: Results of comparing the CHiVE-BERT model to the
baseline. All results are statistically significant, using a two-
sided t-test with o = 0.01. The Q and & symbols indicate female
and male speaker, respectively.

test outcome

Hard lines @ 0.549 £0.076
d  0.5244+0.077
Questions Q 0.287 £ 0.077
Jd  0.229 + 0.075
Generic lines @  0.274 £ 0.058
J 0.186 + 0.056

Table 2: Mean absolute Fo error in Hz, for CHiVE-BERT mod-
els incorporating BERT models of different sizes.

hidden interm. # attention # Transformer
state state heads layers Fo error
24 96 1 2 20.7
128 512 2 2 18.11
128 512 2 4 17.77
256 1024 4 2 17.59
256 1024 4 4 22.28
768 3072 12 6 22.51
768 3072 12 8 22.66

rated by 1 to 8 raters. To gain insight into the quality on differ-
ent kinds of input data, we test it on three separate datasets:

Hard lines A test set of 286 lines, expected to be hard, contain-
ing, e.g., titles and long noun compounds;

Questions As questions are prosodically markedly different
from statements, we include a test sets of 299 questions;
Generic lines The aim of this set is to test against regression
(i.e., that normal lines that already sound good are not nega-
tively impacted). The set consists of 911 lines, typically short,
for which a generic default prosody is likely to be appropriate.

5. Results and analysis

As described in §4.5 we perform tests on three datasets. The
results of the tests are in Table 1. The difference between
CHiVE-BERT and the baseline is most apparent for the hard
lines, and is still significant for the other test sets.

Audio samples of the CHiVE-BERT model and the base-
line are available at https://google.github.io/
chive-prosody/chive-bert/.

5.1. Model sizes

When finetuning for specific NLP task, bigger BERT (or BERT-
like) models tend to yield better results than smaller models
[32, 33]. This was not the case in our experiments, similar to
findings in, e.g., [34]. Table 2 lists the mean absolute error,
in Hz, of predicted Fy when the decoder is conditioned on an
all-zeros embedding, for CHiVE-BERT models incorporating
BERT models of different sizes (pretrained on the same corpus,
and all fine-tuned). We observe a trend where bigger models
yield higher losses. To see if smaller is always better we also
tried a very small model (first row in the table) which does sur-
prisingly well, but worse than the medium sized models.
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Table 3: Comparison of CHIVE-BERT to the same model in
which the BERT part is not fine-tuned. All results are statisti-
cally significant, using a two-sided t-test with o = 0.01

test outcome

Hard lines ? 0.320 £ 0.069
Jd  0.642 +0.072
Questions Q 0.238 £0.082
d  0.504 + 0.083
Generic lines Q 0.208 £ 0.054
J  0.588 + 0.068

5.2. Fine-tuning

Different from the findings in [13], but in line with, e.g., [35],
taking the output of a fixed BERT model did not improve per-
formance in our setting. We found that the BERT part of the
model has to be fine-tuned. Table 3 lists the results of a side-
by-side test of the fine-tuned model described above, and the
exact same model where no gradients flow to the BERT part of
the model at all. As we can see from this table, fine-tuning the
model consistently yields better results.

5.3. Negative findings

BERT models typically have a much smaller learning rate dur-
ing pretraining (e.g., 10™) than the one we use when training
CHiVE-BERT (0.05). We tried applying a similar (smaller)
learning rate to just the BERT part of the model, which yielded
identical or worse results than not doing this.

6. Conclusion

We presented CHiVE-BERT, an RNN-based prosody model
that incorporates a BERT model, fine-tuned during training, to
improve the prosody of synthesized speech. We showed that
our model outperforms the state-of-the-art baseline on three
datasets selected to be prosodically different, for a female and
male speaker.

We conclude from our findings that, rather than using em-
beddings from a pretrained BERT model, fine-tuning BERT is
crucial for getting good results. Additionally, our experiments
indicate that relatively small BERT models yield better results
than much bigger ones, when employed in a speech synthesis
context as proposed. This is at odds with findings in other NLP
tasks, where bigger models tend to yield better performance.

A limitation of the work presented is that, even though both
the RNNs and the BERT model we implemented can, in the-
ory, handle arbitrarily long input [36], very long sequences will
take prohibitively long to synthesize. Novel developments in
model distillation, or new ways of running parts of the network
in parallel might allow for longer sequences to be dealt with.

Lastly, the current evaluations were done on US English
data only. It would be interesting to see if similar improvements
can be obtained on other languages.
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