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Abstract
Recent advances in Text-to-Speech (TTS) have improved qual-
ity and naturalness to near-human capabilities. But something
which is still lacking in order to achieve human-like commu-
nication is the dynamic variations and adaptability of human
speech in more complex scenarios. This work attempts to solve
the problem of achieving a more dynamic and natural intona-
tion in TTS systems, particularly for stylistic speech such as
the newscaster speaking style. We propose a novel way of ex-
ploiting linguistic information in VAE systems to drive dynamic
prosody generation. We analyze the contribution of both seman-
tic and syntactic features. Our results show that the approach
improves the prosody and naturalness for complex utterances
as well as in Long Form Reading (LFR).
Index Terms: Semantic, Syntactic, Text to Speech, Prosody

1. Introduction
Recent advances in TTS have significantly improved the natu-
ralness of synthetic speech [1–4]. One aspect that most sys-
tems are still lacking is the natural variability of human speech,
which is being observed as one of the reasons why the cogni-
tive load of synthetic speech is higher than that of humans [5].
This is something that variational models such as those based
on Variational Auto-Encoding (VAE) [4, 6] attempt to solve by
exploiting the sampling capabilities of the acoustic embedding
space at inference time.

Despite the advantages that VAE-based inference brings, it
also suffers from the limitation that to synthesize a sample, one
has to select an appropriate acoustic embedding for it, which
can be challenging. A possible solution to this is to remove
the selection process and consistently use a centroid to repre-
sent speech. This provides reliable acoustic representations but
it suffers from the monotonicity problem of conventional TTS.
On the other hand random sampling from acoustic space would
reduce the monotonicity but can lead to erraticness for longer
texts.. Finally, one can consider text-based selection or predic-
tion, as done in this research.

The tight relationship between syntactic constituent struc-
ture and prosody is well known [7, 8]. In the traditional Natu-
ral Language Processing (NLP) pipeline, constituency parsing
produces full syntactic trees. Recent relevant work exploring
the advantages of exploiting syntactic information for TTS can
be seen in [9, 10]. Those studies, without any explicit acoustic
pairing to the linguistic information, inject a number of curated
features concatenated to the phonetic sequence as a way of in-
forming the TTS system.

More recent approaches based on Contextual Word Embed-
ding (CWE) suggest that CWE are largely able to implicitly
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represent the classic NLP pipeline [11], while still retaining the
ability to model lexical semantics [12]. However simply plug-
ging such embeddings as a feature during synthesis has shown
not to perform well [13].

On the other hand, the present study explores more ap-
propriate ways to exploit linguistic information specifically for
VAE based synthesis. We do so by driving the acoustic embed-
ding selection to guide prosodic contour rather than using them
as additional model features.

An exploration of how to use linguistics as a way of predict-
ing adequate acoustic embeddings can be seen in [14], where
the authors explore the path of predicting an adequate em-
bedding by informing the system with a set of linguistic and
semantic information. This work predicts a point in a high-
dimensional space by making use of sparse input informa-
tion (which is a challenging task and potentially vulnerable to
training-domain dependencies). This work differs as we use
the linguistic information to predict the most similar embed-
ding from our training set, reducing the complexity of the task
significantly.

The main contributions of this work are: i) we present a
novel approach for linguistically informed acoustic embedding
selection during VAE synthesis; ii) we compare the proposed
approach with simply including linguistic information as addi-
tional features in VAE based TTS; iii) we demonstrate that this
embedding selection approach improves the overall TTS quality
along with prosody in complex scenarios and LFR; iv) Finally,
we compare the improvements achieved by exploiting syntactic
information in contrast with those brought by CWE.

2. Proposed Approach
We explore the following two hypotheses in our experiments:
(i) linguistic information has been used sub optimally in TTS
synthesis. Using this information to drive the embedding selec-
tion in the VAE system will result in improved prosodic quality
as compared to using it as additional features; (ii) in some sce-
narios, syntax will be able to generalize better than CWE.

The objective of this work is to exploit sentence-level
prosody variations available in the training dataset while syn-
thesizing speech for the test sentence. The steps executed in
this proposed approach are: (i) Generate suitable vector repre-
sentations containing linguistic information for all the sentences
in the train and test sets, (ii) Measure the similarity of the test
sentence with each of the sentences in the train set. We do so
by using cosine similarity between the vector representations as
done in [15] to evaluate linguistic similarity (LS), (iii) Choose
the acoustic embedding of the train sentence which gives the
highest similarity with the test sentence, (iv) Synthesize speech
from VAE-based inference using this acoustic embedding
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Figure 1: Constituency parse tree

2.1. Systems
We experiment with three different systems for generating vec-
tor representations of the sentences, which allow us to explore
the impact of both syntax and semantics on the overall quality
of speech synthesis. These representations are used to select a
sentence level acoustic embedding from the training set.

2.1.1. Syntactic
Syntactic representations for sentences like constituency parse
trees need to be transformed into vectors in order to be usable in
neural TTS models. Some dimensions describing the tree can
be transformed into word-based categorical feature like identity
of parent and position of word in a phrase [16].

The syntactic distance between adjacent words is known
to be a prosodically relevant numerical source of information
which is extracted from constituency trees [17]. It is explained
by the fact that if many nodes must be traversed to find the
first common ancestor, the syntactic distance between adjacent
words is high. Large syntactic distances correlate with acousti-
cally relevant events such as phrasing breaks or prosodic resets.

To compute syntactic distance vector representations for
sentences, we use the algorithm mentioned in [18]. That is, for a
sentence of n tokens, there are n corresponding distances which
are concatenated together to give a vector of length n. The dis-
tance for each token is calculated with respect to the previous
token. For the first token the distance is always 0.

We see an example in Figure 1: for the sentence “The brown
fox is quick and it is jumping over the lazy dog”, distance vector
is d = [0 2 1 3 1 8 7 6 5 4 3 2 1]. The completion of the subject
noun phrase (after ‘fox’) triggers a prosodic reset, reflected in
the distance of 3 between ‘fox’ and ‘is’. There should also be a
more emphasized reset at the end of the first clause, represented
by the distance of 8 between ‘quick’ and ‘and’.

2.1.2. BERT
To generate CWE we use BERT [19], as it is one of the best
performing pre-trained models with state of the art results on
a large number of NLP tasks. BERT has also shown to gener-
ate strong representations for both syntax and semantics. We
use the word representations from the uncased base (12 layer)
model without fine-tuning. The sentence level representations
are achieved by averaging the second to last hidden layer for
each token in the sentence. We do not use ‘[CLS]’ as it acts as
an “aggregate representation” for classification tasks and is not
the best choice for quality sentence embeddings vectors.

2.1.3. BERT Syntactic
Even though BERT embeddings capture some aspects of syn-
tactic information along with semantics, we decided to experi-

ment with a system combining the information captured by both
of the above mentioned systems. The information from syntac-
tic distances and BERT embeddings cannot be combined at to-
ken level to give a single vector representation since both these
systems use different tokenization algorithms. Tokenization in
BERT is based on the wordpiece algorithm [20]. On the other
hand, tokenization used to generate parse trees is based on mor-
phological considerations rooted in linguistic theory. At infer-
ence time, we average the similarity scores obtained by compar-
ing the BERT embeddings and the syntactic distance vectors.

3. Applications to LFR
The systems described in Section 2.1 produce utterances with
more varied prosody as compared to the long-term monotonic-
ity of those obtained via centroid-based VAE inference. How-
ever, when considering multi-sentence texts, issues of erratic
transitions can be introduced. We tackle this by minimizing the
acoustic variation a sentence can have with respect to the previ-
ous one, while still minimizing the linguistic distance. We con-
sider the Euclidean distance between the 2D Principal Compo-
nent Analysis (PCA) projected acoustic embeddings as a mea-
sure of acoustic variation, as we observe that the projected space
provides us with an acoustically relevant space in which dis-
tances can be easily obtained. The 64-dimensional VAE space
did not perform as intended, likely because euclidean distances
are not being in the non-linear manifold representation. As a re-
sult, a sentence may be linguistically the closest match in terms
of syntactic distance or CWE, but it will still not be selected if
its acoustic embedding is far apart from that of the previous one.

We modify the similarity evaluation metric used for choos-
ing the closest match from the train set by adding a weighted
cost to account for acoustic variation. This approach focuses
only on the sentence transitions within a paragraph rather than
optimizing the entire acoustic embedding path. This is done
as follows: (i) Define the weights for linguistic similarity and
acoustic similarity. In this work, the two weights sum up to
1; (ii) The objective is to minimize the following loss for each
sentence in the paragraph considering the acoustic embedding
chosen for the previous sentence in the paragraph:

Loss = LSW ∗ (1− LS) + (1− LSW ) ∗D (1)
where LSW = Linguistic Similarity Weight; LS = Linguistic Co-
sine Similarity between test and train sentence; D = Euclidean
distance between the acoustic embedding of the train sentence
and the acoustic embedding chosen for the previous sentence.

We fix D=0 for the first sentence of every paragraph. Thus,
this approach is more suitable for cases when the first sentence
is generally the carrier sentence, i.e. one which uses a structural
template. This is particularly the case for news stories such as
the ones considered in this research.

As LSW decreases, the transitions become smoother. This
is not ‘free’: there is a trade-off, as increasing the transition
smoothness decreases the linguistic similarity which also re-
duces the prosodic divergence. Figure 2 shows the trade-off
when using syntactic distance to evaluate LS. Low linguistic
distance (i.e. 1 - LS) and low acoustic distance are required.

The plot shows that there is a sharp decrease in acoustic dis-
tance between LSW of 1.0 and 0.9 but the reduction becomes
slower from therein, while the changes in linguistic distance
progress in a linear fashion. We informally evaluated the per-
formance of the systems by reducing LSW from 1.0 till 0.7 with
a step size of 0.05 in order to look for an optimal balance. At
LSW=0.9, the first elbow on acoustic distance curve, there was
a significant decrease in the perceived erraticness.
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Figure 2: Acoustic Distance (solid line) vs Linguistic Distance
(dashed line) as a function of LSW across paragraphs

Figure 3: Schematic of the implemented TTS system

We performed an internal preference test between the sam-
ples generated from LSW=1.0 and LSW=0.9. The results de-
picted statistical insignificance between the two. However,
on individual listening of samples we observed that the para-
graphs which comprised of a sentence which shared high lin-
guistic similarity with a more acoustically divergent training
sample the preference was given to LSW=0.9. Hence, we chose
LSW=0.9 for our LFR evaluations.

4. Experimental Protocol
The research questions we attempt to answer are:

Q1: How does using linguistic embeddings as model features
impact TTS quality from VAE based systems?

Q2: Can linguistics-driven selection of acoustic waveform
from the existing dataset lead to improved prosody and
naturalness when synthesizing speech ?

Q3: How does syntactic selection compare with CWE selec-
tion?

Q4: Does this approach improve LFR experience as well?

4.1. Text-to-Speech System
The evaluated TTS system is a Tacotron-like system [21] al-
ready verified for the newscaster domain. A schematic descrip-
tion can be seen in Figure 3 and a detailed explanation of the
baseline system and the training data can be read in [22, 23].
Conversion of the produced spectrograms to waveforms is done
using the Universal WaveRNN-like model presented in [3].

For this study, we consider an improved system that re-
placed the one-hot vector style modeling approach by a VAE-
based reference encoder similar to [4,6], in which the VAE em-
bedding represents an acoustic encoding of a speech signal, al-
lowing us to drive the prosodic representation of the synthesized
text as observed in [24]. Embedding selection at inference time

is defined by the approaches introduced in Sections 2.1 and 3.
Embedding dimension is set to 64 to allow for the best conver-
gence without collapsing the KLD loss during training.

4.2. Datasets
4.2.1. Training Dataset
(i) TTS System dataset: We trained the TTS system with
a mixture of neutral and newscaster style speech for a single
speaker in US English. Total of ~24 hours of training data, split
in 20 hours of neutral (22000 utterances) and ~4 hours of news-
caster styled speech (3000 utterances).
(ii) Embedding selection dataset: As the evaluation was car-
ried out on the newscaster style, we restrict our linguistic search
space to the utterances associated to the style: 3000 sentences.

4.2.2. Evaluation Dataset
(i) Common Prosody Errors (CPE): The dataset on which the
baseline Prostron model fails to generate appropriate prosody.
This dataset consists of utterances like compound nouns (22%),
“or” questions (9%), “wh” questions (18%). This set is further
enhanced by sourcing complex utterances (51%) from [25].
(ii) LFR: As demonstrated in [26], evaluating sentences in iso-
lation does not suffice if we want to evaluate the quality of long-
form speech. Thus, for evaluations on LFR we curated a dataset
of news samples. The news sentences were concatenated into
full news stories, to capture the overall expressive experience.

4.3. Subjective evaluation
Our tests are based on MUltiple Stimuli with Hidden Reference
and Anchor (MUSHRA) [27], but without forcing a system to
be rated as 100, and not always considering a reference.

For the CPE dataset, we carried out two tests. One with
10 linguistic experts as listeners, who were asked to rate the
appropriateness of the prosody, ignoring speaking style, on a
scale from 0 (very inappropriate) to 100 (very appropriate). We
chose linguists for this test as prosodic evaluations are com-
plex and require domain specific knowledge. The second test
was carried out on 10 crowd-sourced listeners who evaluated
the naturalness of the speech from 0 to 100. In both tests each
listener was asked to rate 28 different screens, with 4 randomly
ordered samples per screen for a total of 112 samples. The 4
systems were the 3 proposed ones and the centroid-based VAE
inference was fixed as the baseline.

For LFR it’s difficult to get consistent scoring while eval-
uating prosody, as one needs to remember the entire context.
Also, there’s no canonically “correct” rendition of a paragraph.
Thus, we conducted a crowd-sourced evaluation only for natu-
ralness where the listeners were asked to assess the suitability
of newscaster style on a scale from 0 (completely unsuitable)
to 100 (completely adequate). Each listener was presented with
51 news stories, each playing one of the 5 systems including the
original recordings as a top anchor, the centroid-based VAE as
baseline and the 3 proposed linguistics-driven acoustic embed-
ding selection systems.

All of our listeners, regardless of linguistic knowledge were
native US English speakers.

5. Results
For Q1, we ran another internal preference test on the CPE
dataset between the centroid baseline model with and without
BERT CWEs as additional features. We chose CWE for this
test as they are believed to capture both semantics and syn-
tactics. The BERT based model performed significantly worse
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Figure 4: Prosody MUSHRA results on CPE dataset.

(p<<0.01) than the centroid baseline as we believe it was un-
able to generalise to unseen scenarios due to the sparsity of the
linguistic-acoustic mapping space at utterance level. Hence, we
eliminate this system from further evaluations.

Figure 4 and Table 1 report the MUSHRA scores for eval-
uating prosody and naturalness respectively for the test sys-
tems on the CPE dataset. These results answer Q2, as the
proposed approach improves significantly over the baseline on
both grounds. It gives us evidence to support our hypothesis
that linguistics-driven acoustic embedding selection can signif-
icantly improve speech quality. We also observe that better
prosody does not translate into improved naturalness and that
there is a need to improve acoustic modeling in order to better
reflect the prosodic improvements achieved.

Table 1: Naturalness MUSHRA on CPE dataset. Fields in
bold are indicative of best results. * depicts statistical

insignificance in comparison to baseline (p>0.05)

Baseline Syntactic BERT BERT
Syntactic

Naturalness 61.84 61.36* 63.67* 64.0

We validate the differences between MUSHRA scores us-
ing pairwise t-test. All systems improved significantly over the
baseline prosody (p<0.01). For naturalness, only BERT Syn-
tactic improved over the baseline significantly (p=0.04).

Table 2: Prosody evaluation breakdown by categories on CPE

System ‘wh’ ‘or’ compound Complex
questions questions nouns

Baseline 64.35 56.89 70.05 68.84
Syntactic 68.39 66.04 70.46 71.36

BERT 71.26 73.15 71.25 75.05
BERT Syntactic 72.25 78.15 70.13 73.69

Q3 is explored in Table 2, which gives the breakdown of
prosody results by major categories in CPE. For ‘wh’ questions,
we observe that Syntactic alone brings an improvement of 4%
and BERT Syntactic performs the best by improving 8% over
the baseline. This suggests that ‘wh’ questions generally share
a closely related syntax structure and that information can be
used to achieve better prosody. This intuition is further strength-
ened by the improvements observed for ‘or’ questions. Syntac-
tic alone improves by 9% over the baseline and BERT Syntactic
performs the best by improving 21% over the baseline. The im-

Figure 5: Naturalness MUSHRA results on LFR dataset.
Joining line between two systems signifies statistical

insignificance in comparison to baseline(p>0.05)

provement observed in ‘or’ questions is greater than ‘wh’ ques-
tions as most ‘or’ questions have a syntax structure unique to
them. For both categories, the systems Syntactic, BERT and
BERT Syntactic show incremental improvement. Thus, it is ev-
ident that the extent of syntactic information captured drives
speech synthesis quality for these two categories.

Compound nouns proved harder to improve upon as com-
pared to questions. BERT performed the best in this category
with a 1.2% absolute improvement over the baseline. We spec-
ulate that BERT’s ability to encode semantic information in ad-
ditional to distributional one is crucial in its better treatment of
compounds. The stress pattern of nominal compounds crucially
depends on the semantics of the entities involved.

For other complex sentences, BERT performed the best
by improving 6% over the baseline. This can be attributed to
the fact that most of the complex sentences required contextual
knowledge. Although Syntactic does improve over the baseline,
syntax does not look like the driving factor as BERT Syntactic
performs a bit worse than BERT. This indicates that enhancing
syntax representation hinders BERT from fully leveraging the
contextual knowledge it captured to drive embedding selection.

Q4 is answered in Figure 5, which reports the MUSHRA
scores on the LFR dataset. Only the Syntactic system improved
over baseline with statistical significance (p=0.02). We close
the gap between the baseline and the recordings by almost 20%.

To achieve suitable prosody, LFR requires longer distance
dependencies and knowledge of prosodic groups. Such infor-
mation can be approximated more effectively by the Syntactic
system rather than the CWE based systems.

6. Conclusions
Current VAE-based TTS systems are susceptible to monotonous
speech generation due to the need to select a suitable acoustic
embedding for synthesis. In this work, we propose a novel ap-
proach to leverage linguistic information to drive the embedding
selection of such systems. We demonstrate, that doing so is bet-
ter than simply using the information as modeling features.

Our approach improves the generated speech in both
prosody and naturalness. We propose 3 systems (Syntactic,
BERT and BERT Syntactic) and evaluated their performance
on 2 datasets: common prosodic errors and LFR. The Syntactic
system improved significantly over the baseline on most param-
eters. Information captured by BERT further improved prosody
for cases where contextual knowledge was required. For LFR,
we bridged the gap between baseline and recordings by ~20%.
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