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Abstract
Prosodic event detection plays an important role in spoken
language processing tasks and Computer-Assisted Pronuncia-
tion Training (CAPT) systems [1]. Traditional methods for
the detection of sentence stress and phrase boundaries rely
on machine learning methods that model limited contextual
information and account little for interaction between these
two prosodic events. In this paper, we propose a hierarchical
network modeling the contextual factors at the granularity of
phoneme, syllable and word based on bidirectional Long Short-
Term Memory (BLSTM). Moreover, to account for the inherent
connection between sentence stress and phrase boundaries, we
perform a joint modeling of these two important prosodic events
with a multitask learning framework (MTL) which shares com-
mon prosodic features. We evaluate the network performance
based on Aix-Machine Readable Spoken English Corpus (Aix-
MARSEC). Experimental results show our proposed method
obtains the F1-measure of 90% for sentence stress detection
and 91% for phrase boundary detection, which outperforms the
baseline utilizing conditional random field (CRF) by about 4%
and 9% respectively.
Index Terms: Prosodic event detection, contextual informa-
tion, hierarchical network, MTL, BLSTM

1. Introduction
Prosody plays an important role in many spoken language
processing tasks such as automatic speech recognition (ASR),
speech synthesis and dialect identification [2]. It is also helpful
in determining the pronunciation proficiency of the language
learners [3]. Corpora annotated with prosodic information will
be beneficial for these spoken language applications. An auto-
matic prosodic labeling system can greatly simplify the task of
annotation.

The main prosodic events we are concerned about in this
paper are sentence stress and phrase boundary. Generally,
phrasing can combine words into prosodic units by intonational
patterns [4]. Sentence stress can form a certain natural stress
pattern characteristic for a given language and give emphasis on
particular words based on their relative importance. Sentence
stress is different from pitch accent that carries pitch promi-
nence caused by an intonation event as well as rhythmic promi-
nence caused by sentence stress [5].

Due to the suprasegmental nature of prosody, it has impact
on the acoustics of speech over a much longer context such as
the word level or phrasal level than the frame level or phoneme
level [6, 7]. Many approaches have demonstrated the benefits of
adding contextual information in prosody detection. Previous
work combined features of its left neighbors and right neigh-
bors to form contextual windows [2, 8, 9]. These methods can
only model fixed neighboring context, and thus later many ma-

chine learning models are implemented to deliver context infor-
mation dynamically, such as hidden Markov model (HMM) or
CRF [2, 10, 11, 12]. Although models such as CRF can capture
relations between sequential prosodic labels, they still need to
find useful contextual features by manual feature engineering.
To capture contextual information automatically, many neural
network architectures have been explored. Convolutional neu-
ral network (CNN) was employed in the prosodic event recog-
nition to learn contextual influence in a fixed context window
[13]. To encode prosodic features in a larger context, recurrent
neural network (RNN) have been applied. A special structure of
RNN called LSTM have been applied in pitch accent detection
[14]. A particular method based on BLSTM was proposed in
the detection of prosody to further capture bidirectional contex-
tual information and achieve better performance than the base-
line of the previous work. However, these approaches mainly
focus on the broad range contextual influence (i.e., the word
and the phrasal level) and account little for the local contex-
tual influence (i.e., the phoneme and the syllable level). The lo-
cal syllabic effects and broad phrasal contextual influence have
been investigated in the task of pitch accent detection and the
results showed the improved performance by combining both
of them [15]. To investigate the contextual importance over
the broad and local ranges, the work [16] examined the per-
formance of pitch accent detection at the phoneme, syllable and
word level, respectively, and showed that incorporating infor-
mation from surrounding context can improve performance at
all levels. Inspired by these studies, we combine both the local
and broad range of the contextual information at the granularity
of phoneme, syllable and word by the BLSTM for the detection
of sentence stress and phrase boundaries.

As there are many acoustic cues in prosody, the inherent
connection of prosodic events has been investigated in recent
studies. The work [17] explored the effects of phrase boundary
on sentence pitch accent. The interaction of boundary tone and
prominence has also been surveyed [18]. With the development
of machine learning, a learning paradigm called MTL is consid-
ered to leverage useful information contained in multiple related
tasks [19]. Following these studies, we propose a hierarchical
network based on the BLSTM which models the contextual in-
formation at multi-granularity of phoneme, syllable and word.
To further explore the connection of prosodic events, we com-
bine the sentence stress and phrase boundary detection based
on an MTL learning framework which shares common acoustic
features between them. We will introduce the proposed method
in section 2. In section 3, the corpus used in the proposed model
is introduced and the hyperparameters of the proposed network
are explained. The results are shown and some discussion is
made in section 4. We will draw the conclusions and future
suggestions in section 5.
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2. Proposed method
2.1. Features for prosodic event detection

We investigate the acoustic features extracted from speech sig-
nal for prosodic event detection. To model contextual infor-
mation from different granularity, the phonemes and words in
a sentence are first forced-aligned by a Kaldi-based automatic
speech recognition (ASR) system [20]. We can obtain the be-
ginning and ending times of each phoneme or word, and then
compute the time interval of one particular syllable based on
the belonging phoneme sequence of the syllable. Acoustic cues
such as fundamental frequency (F0), intensity and duration are
regarded as the important measurable parameters for prosody
[21]. We also use Kaldi to extract these features. The features
of F0 and intensity are computed for each 10ms frame with a
10ms shift. The phoneme and word durations are used to ag-
gregate features of all frames for each phoneme or word into
one input feature matrix.

Using aforementioned features, we calculate a number
of aggregations to represent the prosodic features for each
phoneme, syllable and word. These features include the maxi-
mum, minimum, mean, standard deviation of the prosodic fea-
tures. To account for speaker differences, we normalize the
maximum, minimum of these features within the context of a
particular phoneme, syllable and word using the z-score nor-
malization [22].

In addition to the above aggregation of features within the
context at multi-granularity, the perceptual features related to
sentence stress and phrasing are also included. Sentence phras-
ing is frequently indicated by the presence of silence following
the word and the reset of intensity and F0 [2]. We first nor-
malize duration by speech rate, that is the number of phonemes
per second, and extract features such as silence duration and the
ratio of voiced and silence durations at the phoneme, syllable
and word level. Then we compute changes of F0 and intensity
between adjacent syllables and words. To take into account that
English is a stress-timed language [23], we extract time features
mainly consisting of normalized durations of phonemes, sylla-
bles and words. These features at multi-granularity are treated
as input for the following proposed hierarchical network.

2.2. Modeling method

The hierarchical network is shown in Figure 1. It is composed
of three layers : phoneme, syllable and word layer. To capture
contextual information at multi-granularity, each layer is con-
structed by one BLSTM. The BLSTM is shown in Figure 2.

To carry acoustic information of independent phonemes,
we employ an independent numerical representation for each
phoneme which is called phoneme embedding [24]. The input
features of phoneme layer are phoneme embeddings combined
with other phoneme level features proposed in the previous sec-
tion. The final forward and backward outputs of the phoneme
BLSTM are concatenated as the input of syllable layer. Sim-
ilarly, the aforementioned syllable level acoustic features are
combined as the input of syllable BLSTM layer. The outputs
from the syllable layer and other word level acoustic features
are fed into the word BLSTM layer. As the duration between
stressed syllables is almost equal in English [23], we conduct
the detection of sentence stress from syllable level. Two sepa-
rate fully connected (FC) layers followed by the sigmoid activa-
tion function are applied over syllable and word representations
to determine the sentence stress and phrase boundary jointly.

As MTL shares feature representations and facilitates the

generalization performance of related tasks [19], the network is
optimized by an MTL framework which combines detection of
sentence stress and phrase boundaries. Specifically,

Ltotal = (1− w)× Lstress + w × Lphrasing (1)

where Lstress and Lphrasing are the classification losses of sen-
tence stress and phrase boundaries. w is a constant value bal-
ancing the weight between two tasks. The classification loss
can be defined as Eq. (2),

L = −y × log(p)− (1− y)× log(1− p) (2)

where y is the ground truth of sentence stress or phrase bound-
aries and p is the probability derived from the syllable FC layer
or the word FC layer of the proposed model.

3. Experimental setup
3.1. Corpus description

We mainly focus on two aspects of prosody: sentence stress
and phrase boundary. The standard approach for prosody an-
notation is based on Tone and Break Indices (ToBI) [25]. As
ToBI focuses on pitch accent which is not totally equal to sen-
tence stress, we use the Aix-MARSEC (Aix-Machine Readable
Spoken English Corpus) database [26] as in [5]. Aix-MARSEC
consists of over 5 hours of BBC radio recordings from 53 differ-
ent speakers in 11 different speech styles from the 1980s. The
corpus includes approximately 55, 000 orthographically tran-
scribed words.

We uses the original phrase break annotations for minor and
major boundaries which are equivalent with the break indices 3
and 4 in ToBI [27]. We follow the previous work which treated
the syllable to be stressed when first appearing in each Jassems
narrow rhythm unit (NRU) notation [5]. For practical purposes,
we merge minor and major boundaries into break labels. The
labeling of our prosody in this study can be summarized in Table
1.

Table 1: Modified prosody label

Label 0 1

Stress Unstressed Stressed
Phrasing No break Break

The statistics of data used in our experiments is shown in
Table 2. An utterance consists of multiple sentences. We use
70% of the dataset for training and 30% for testing.

Table 2: The statistics of data

Class Number

Utterances 408
Sentences 3790
Words 51650
Syllables 90163
Phonemes 107540

3.2. Hyperparameters

The proposed network is composed of three BLSTMs represent-
ing the phoneme, word and sentence layers. The input of first
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Figure 1: Sentence stress model structure

LSTM LSTM ...

LSTM LSTM ...

output1 || output2

input1 input2

LSTM

LSTM

input3

LSTM

LSTM

input4

Figure 2: BLSTM structure

layer consists of the phoneme embedding and other phoneme
features proposed in section 2. The phoneme embedding is
composed of 39 different phonemes with feature dimensionality
of 15 based on Carnegie Mellon University (CMU) Pronounc-
ing Dictionary [28]. The final shape of the phoneme embedding
is 39 × 15. The hidden sizes of three BLSTMs at phoneme,
syllable and word level are 20, 15 and 20 respectively. The in-
put feature dimensionality of the three BLSTMs are 26 (15 for
phoneme embeddings and 11 for phoneme acoustic features),
55 (40 from the phoneme layer and 15 from syllable acoustic
features) and 45 (30 from the syllable layer and 15 from word
syllable features). The dimensionalities of the fully connected
layer of the word and syllable layers are 55×2 and 45×2, where
2 indicates a binary classification for sentence stress or phrase
boundaries. The model are trained with the adaptive Adam op-
timizer [29].

4. Results
We evaluate the performance of prosodic event detection by
confusion matrix and F1-measure. First, we will show the per-
formance of the proposed method. Then we will illustrate some
ablation study to validate the rationality of our proposed meth-
ods.

4.1. Performance of prosody detection

The confusion matrix of sentence stress based detection on our
proposed network is shown in Table 3 and the confusion matrix
of phrase boundary detection is shown in Table 4. It shows
the number of syllables or words labeled as stressed (break) or
unstressed (no break) in the Aix-MARSEC testing dataset and
the number of syllables or words predicted as stressed (break) or
unstressed (no break) with our detection models. The accuracy
of sentence stress detection is 88% and the accuracy of phrase
boundary detection is 95%.

Table 3: Confusion matrix of sentence stress detection

XXXXXXXXXlabeled
predicted Unstressed Stressed

Unstressed 9700 1916
Stressed 1289 14144

Table 4: Confusion matrix of phrase boundary detection

PPPPPPPlabeled No break Break

No break 11240 506
Break 203 3546

We adopt the CRF model, which has been commonly used
in prosodic event detection [12, 5, 30] as a fairly strong base-
line in our experiment. The CRF model operates on the sim-
ilar feature as ours. It takes word level features for the de-
tection of sentence phrasing and syllable level features for the
detection of sentence stress. As CRF can’t merge sequential
phonemes features in its model structure, we aggregate features
of a phoneme sequence by calculating the maximum, minimum
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and mean value of phoneme duration in a word or syllable and
the number of phonemes in a word or syllable. To model the
contextual information, we explore features from the neighbor-
ing words or syllables. Specifically, we include acoustic fea-
tures of the preceding N words or syllables and the following N
words or syllables, where N can be adjusted in the experiment.
Two CRF models are created for the detection of sentence stress
and phrase boundaries independently. We compare our results
with the CRF models using different N . For sentence stress,
we also compare results with previous work [5] based on CRF
using the same corpus as ours. The results are shown in Table
5.

Table 5: F1-measure of prosody detection

Stress Phrasing
P R F1 P R F1

CRF(N=1) 0.78 0.86 0.82 0.81 0.80 0.80
CRF(N=2) 0.86 0.87 0.86 0.81 0.83 0.82
CRF(N=4) 0.84 0.86 0.85 0.79 0.83 0.81

CRF [5] 0.85 0.89 0.87 - - -
Ours 0.88 0.92 0.90 0.88 0.95 0.91

Our proposed model achieves superior performance by 4%
in sentence stress detection and 9% in phrase boundary detec-
tion based on F1-measure. From the results, we can see that
different window sizes of context influence the performance of
CRF. The best performance of CRF is based on window con-
text size of 2 rather than 4. Previous work using CRF achieved
the similar results. While the CRF model captures limited static
contextual information, our model can capture the contextual
influence dynamically.

4.2. Ablation study

We demonstrate the effectiveness of our proposed network from
two aspects: (1) MTL combining detection of sentence stress
and phrase boundary; (2) the contextual influence at multi-
granularity of phoneme, syllable and word.

4.2.1. Effect of MTL

To demonstrate the effect of MTL, the detection tasks of sen-
tence stress and phrasing are carried out independently. Specif-
ically, the sentence stress detection task is based on our pro-
posed model with only the phoneme layer and syllable layer
(STL) and the sentence phrasing task is based on our proposed
model with the sentence stress detection task removed (STL).
The results are shown in Table 6.

Table 6: Comparison of STL and MTL

Stress Phrasing
P R F1 P R F1

STL 0.87 0.89 0.88 0.86 0.92 0.89
MTL 0.88 0.92 0.90 0.88 0.95 0.91

The results from the table show that the performance of the
two single-learning tasks is around 2% inferior to our proposed
MTL learning method. It indicates that our proposed method
based on the MTL framework can further improve the perfor-
mance of these two detection tasks by common prosodic fea-
tures sharing and joint optimizing.

4.2.2. Effect of the multi-granular contextual influence

To demonstrate the effect of contextual influence at multi-
granularity, we illustrate the performance of the sentence phrase
boundary detection without the phoneme layer (No phoneme)
and without both the phoneme and syllable layers (With word),
respectively, and the sentence stress detection with the phoneme
layer removed (No phoneme). We compare these methods with
our proposed model in a single-task learning manner (STL). The
results are shown in Table 7.

Table 7: F1-measure of prosody detection

Stress Phrasing
P R F1 P R F1

No phoneme 0.84 0.87 0.85 0.86 0.90 0.88
With word - - - 0.85 0.90 0.87

STL 0.87 0.89 0.88 0.86 0.92 0.89

The results reveal that the proposed method with only word
layer left performs 2% inferior to the full model for the detec-
tion of phrase boundaries. The performance of the model with
the phoneme layers removed performs 1% inferior to our pro-
posed model. It could indicate that sentence phrase boundary
is more correlated with contextual information on the syllable
and word level than on the phoneme level. For sentence stress
detection, the performance of our network degrades nearly 3%
in F1-measure when contextual information of phoneme is re-
moved, which shows the phoneme contextual influence on the
sentence stress.

5. Conclusions
In this paper, we propose an automatic prosody detection
method for sentence stress and phrase boundaries. A hierar-
chical network based on BLSTM is developed to dynamically
capture contextual information at multi-granularity of phoneme,
syllable and word. To further model the connection of sentence
stress and phrase boundaries, we implement two detection tasks
jointly by an MTL learning framework to share common fea-
tures at the phoneme and syllable levels. The experiment re-
sults on Aix-MARSEC show our prosody model can achieve
the F1-measure of 90% in sentence stress detection and 91% in
phrase boundary detection which is superior than the baseline
CRF. Currently, our proposed method mainly focuses on sen-
tence stress and phrase boundary detection, we will extend this
mechanism to other aspects of prosody detection in the future,
such as boundary tone. We will also explore detection methods
with less feature engineering.
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