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Abstract

Current multi-reference style transfer models for Text-to-
Speech (TTS) perform sub-optimally on disjoints datasets,
where one dataset contains only a single style class for one
of the style dimensions. These models generally fail to pro-
duce style transfer for the dimension that is underrepresented
in the dataset. In this paper, we propose an adversarial cycle
consistency training scheme with paired and unpaired triplets
to ensure the use of information from all style dimensions. Dur-
ing training, we incorporate unpaired triplets with randomly se-
lected reference audio samples and encourage the synthesized
speech to preserve the appropriate styles using adversarial cy-
cle consistency. We use this method to transfer emotion from
a dataset containing four emotions to a dataset with only a
single emotion. This results in a 78% improvement in style
transfer (based on emotion classification) with minimal reduc-
tion in fidelity and naturalness. In subjective evaluations our
method was consistently rated as closer to the reference style
than the baseline. Synthesized speech samples are available at:
https://sites.google.com/view/adv-cycle-consistent-tts
Index Terms: Text-to-Speech, Speech Synthesis, Style Trans-
fer, Cycle Consistency, Adversarial Learning

1. Introduction
The goal of Text-To-Speech (TTS) synthesis is to generate
human-like speech based on a text input. Recently, end-to-end
trainable neural networks have become increasingly popular for
this task. For example, Tacotron [1] and Tacotron-2 [2] use an
encoder-decoder architecture that is trained with pairs of text
and audio samples 〈xtxt, xaud〉 and a learning objective that
the synthesized speech should faithfully reconstruct xaud. With
the success of neural TTS systems, the current focus has been
on TTS stylization [3], where the goal is to control the style
of speech during the synthesis process. The stylization occurs
when the system can generate speech for a given text input in a
style that is different from what exists in the training data. An
ability to control speech style is crucial for developing natural,
human-like TTS systems.

Emotion
Speaker ID Neutral Sad Angry Happy

Speaker 1 X
Speaker 2 X X X X

Table 1: We use multiple reference audio clips to control dif-
ferent dimensions of speech style (e.g., speaker ID and emo-
tion). We focus on the scenario of disjoint datasets, e.g., only
one dataset (Speaker 2) contains samples of different emotions.

We use style dimension to refer to the category of the given
style, such as speaker identity, emotion, or accent, and style
class to refer to a specific type such as speaker1, happy, or
Scottish. An audio sample xaud has style class labels for ei-
ther all the defined style dimensions, e.g., it is from speaker1
with happy emotion and a Scottish accent, or only for a sub-
set of the style dimensions, e.g., it is missing the emotion and
accent labels.

Multiple systems exist to model the style of speech [3, 4, 5],
where a reference audio sample with the desired style is used as
a conditioning variable during the TTS process. However, most
existing approaches require a large number of text-audio train-
ing samples of different style dimensions/classes. They also
often fail to generalize to new domains unseen during training.
For example, to create speech in different speaker identities and
emotion classes using a single model, a dataset containing audio
samples for each emotion class and speaker identity is needed,
and yet the model could still fail to transfer the emotion style
to an unseen speaker. Collection of such datasets is challenging
and this limits a timely deployment of large-scale TTS styliza-
tion systems.

In this paper, we focus on multi-reference neural TTS styl-
ization with disjoint datasets. Disjoint datasets occur when one
dataset contains samples of only a single style class for one
of the style dimensions. Table 1 shows a particular scenario
we consider in this paper: we use an internal dataset of North
American English with two speakers. The dataset for Speaker 1
contains examples for only a single emotion (Neutral) whereas
the dataset for Speaker 2 contains examples of all four emotion
classes (Neutral, Sad, Angry, Happy). This represents a min-
imalistic scenario of the aforementioned issue: a model must
be able to learn disentangled representations of the two style
dimensions, and properly transfer the knowledge about one di-
mension (emotion) across another dimension (speaker identity)
where no variation of style classes is available. This poses a
significant challenge to TTS stylization similar to domain adap-
tation [6], yet in a unique scenario of style transfer in the speech
signal processing domain.

Previous work on TTS stylization has primarily focused on
the transfer of a single style reference audio sample [3, 4, 5, 7].
Those methods are inadequate for disjoint datasets because of
their lack of domain adaptation capability. In an extreme case,
those methods could, for example, learn to identify the emotion
using features from the speaker identity dimension. They could
also simply ignore the other style dimension (emotion) entirely
and always map Speaker 1 samples to the only available style
class (Neutral).

Recently, Bian et al. [8] tackled multi-reference TTS styl-
ization, based on GST-Tacotron [4] and an intercross training
scheme. They showed successful style transfer on a speaker-
prosody multi-reference scenario using a 30-hour corpus with

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-29854442



Figure 1: Our adversarial cycle consistency training scheme for
unpaired samples in a two-reference model. Paired samples are
trained with the same scheme and same components, except the
synthesized samples ẽaud are not re-encoded, i.e., the orange
dashed lines do not exist for paired samples.

27 speakers and 5 prosodies. However, their intercross training
scheme does not guarantee each combination of style classes is
seen during training, causing a missed opportunity to learn dis-
entangled representations of styles and sub-optimal results on
disjoint datasets.

In this paper, we address the challenges of multi-reference
style transfer on disjoint datasets by using an adversarial cy-
cle consistency training scheme. Unlike intercross training, our
training scheme sweeps across all combinations of style classes
via paired and unpaired triplets. This provides disentanglement
of multiple style dimensions and classes, enabling our model
to transfer style in a more faithful manner than existing meth-
ods. Testing on our 40-hour disjoint dataset of 2 speakers and
4 emotions, we observe improved emotional expressiveness in
synthesized speech, achieving 98.34% classification accuracy
of emotion, a 78.48% improvement over the baseline model.

2. Our Method
Fig 1 shows a schematic diagram of our system. It consists of a
text encoder Etxt, reference audio encoders Eaud1 and Eaud2,
and an audio decoder Daud. Each audio encoder captures a
different style dimension, e.g., Eaud1 captures speaker identity
and Eaud2 captures emotion.

At inference time, our model encodes a text string and two
reference audio inputs, and produces a spectrogram using the
audio decoder; this is converted to the wave file format using
the Griffin-Lim vocoder [9]. More specifically, our text encoder
Etxt and audio decoderDaud follow the same encoder-decoder
architecture of Tacotron-2 [2]. We augment this with a reference
encoder for each style dimension and concatenate each output
embedding eaud1, eaud2 to the text context vector at each de-
coder step. The reference audio encoders follow the same struc-
ture as the audio encoder in [10].

During training, we attach style classifiersCls(·,·) with gra-
dient reversal layers GradRev and feed the generated spectro-
grams back to the reference audio encoders. This forms the
adversarial cycle consistency objective [11]. Below we provide
details of our training method.

2.1. Model Training

Learning from disjoint datasets is difficult because we do not
have text-audio pairs for all possible combinations of style
classes across each style dimension. To encourage disentan-
gling of the style embeddings, we require the model to use both
style embeddings eaud1 and eaud2 during training, with each
capturing a different style dimension. Further, we carefully se-
lect reference audio samples to ensure each style and speaker is
seen during training, filling in the gaps in Table 1.

We achieve this by synthesizing speech from both paired
and unpaired triplets. We use the convention xaudn,p to repre-
sent reference audio samples, where n stands for the style di-
mension and p stands for the pairing type. The pairing type can
take one of three values: 1) a paired audio sample xaudn,+ with
the same verbal content as the input text, 2) a style-matched au-
dio sample xaudn,∗ with the same style class as the paired audio
sample but with a different verbal content than the input text, 3)
a random audio sample xaudn,− with a random style class.

A paired triplet contains a text sample, a paired audio sam-
ple, and a style-matched audio sample, and it can be either
〈xtxt, xaud1,+ , xaud2,∗〉 or 〈xtxt, xaud1,∗ , xaud2,+〉. An un-
paired triplet contains a text sample and two random audio sam-
ples, 〈xtxt, xaud1,− , xaud2,−〉. Our style-matched sample is
similar to that in the intercross training scheme used by Bian et
al. [8], and our random sample is similar to the unpaired train-
ing scheme used by Ma et al. [3]. In this work, we combine
those ideas to enable multi-reference TTS stylization from dis-
joint datasets. Next, we discuss the loss functions used for the
paired and unpaired triplets.

2.2. Reconstruction loss

For the paired triplets only, we force the synthesized spec-
trograms to reconstruct the paired audio sample. We follow
[1, 3, 4] and define an L1 reconstruction loss between the in-
put spectrogram xaud and the output spectrogram x̃aud,

Lrecon = ‖xaud − x̃aud‖1

2.3. Adversarial Cycle Consistency Loss

The reconstruction loss alone is insufficient to constrain our
model. Inspired by [11], we introduce an adversarial cycle con-
sistency loss to further constrain it. Our main idea is that an
embedding eaud from the real audio sample must capture the
correct style information. Thus, when we synthesize audio from
it and feed the result back to the same audio encoder, the result-
ing embedding ẽaud should contain the same style information
as eaud; hence the cycle consistency. Furthermore, each of the
two audio embeddings eaud(·) should only contain information
about the corresponding style dimension; in other words, eaud1
should have no information about style dimension two, and sim-
ilarly eaud2 should not have information about style dimension
one; this can be enforced via adversarial learning.

We design our adversarial cycle consistency loss by com-
bining the two ideas above. To this end, we define style clas-
sifiers Clsi,j where i refers to the style dimension of the input
embedding and j refers to the style dimension upon which the
classification occurs. The classifier is a two-layer MLP with
a softmax classifier and outputs equal to the number of style
classes for the j-th style dimension. We train it with a cross-
entropy loss:

Lcls = −
∑
i,j

yi,j log(ỹi,j)
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where yi,j is the ground-truth style class for the i-th embedding
in the j-th style dimension, and ỹi,j is the predicted style class.
For i = j, the classifier encourages an embedding eaudi to
contain the correct information of the i-th style dimension. For
i 6= j, the classifier discourages the use of information about the
other style dimension. We use the gradient reversal layer [12]
before the classifiers for i 6= j to enable adversarial learning.

The adversarial cycle consistency loss is then a combination
of classification losses for paired triplets, unpaired triplets, and
synthesized samples (with δ = .01),

Ladv.cycle = Lcls,paired + Lcls,unpaired + δLcls,synthesized

2.4. Orthogonality loss

Finally, we introduce an orthogonality constraint to help the
model learn disentangled style representations, similar to [8].
This is defined over the style embeddings as

Lortho =
∑
i,j

‖eᵀaudieaudj‖F ,

where || · ||F is the Frobenius norm and eaudi (and eaudj ) refers
to the style embedding from style dimension i (and j).

2.5. Training details

The final form of our loss function is

L = αLrecon + βLadv.cycle + γLortho

where α = β = 1.0 and γ = 0.02 are weights for the different
loss terms. We found the optimal weights and that the results
are insensitive to small changes to those values through cross-
validation. We train our model on a single machine with four
NVIDIA Tesla M40 GPUs for 40k epochs using a batch size of
96 text/audio pairs, each with a paired and unpaired triplet, for
a total of 192 triplets. Note that Lrecon is defined over only the
paired triplets while the other two loss terms are defined over
both paired and unpaired triplets. We use teacher-forcing for the
reconstruction loss throughout the entire training procedure. At
inference time, we use a window constraint for the text context
attention, enforcing the maximum attention weight to be within
a window of seven frames from the previous max. For the rest
of the hyperparameters, we follow the same setup as outlined
in [2]. After the 40k epochs, we add the adversarial game loss
presented in Ma et al. [3] and train for an additional 1k epochs.
Fine-tuning the model with this loss increases the fidelity of the
synthesized unpaired samples.

3. Experiments and Discussions
Our disjoint datasets are defined over two style dimensions,
speaker identity and emotion, as shown in Table 1. The
datasets contain 15,226 samples (18.55 hours) and 22,325 sam-
ples (21.62 hours) for Speakers 1 and 2 respectively.

3.1. Baseline Model

To the best of our knowledge, there exists only one published
method that tackles multi-reference TTS stylization: we com-
pare to Bian et al. [8] in our experiments.

3.2. Style Classification Accuracy

We train two speech style classifiers (speaker identity and emo-
tion) using the reference audio samples from the TTS training

data. The classifiers have the same structure as the reference en-
coder and the style classifier in our model. Their final validation
accuracies are 99% and 95% respectively.

Next, we synthesize speech from each test text sample four
times, once in each emotion, and predict their style class labels
using the trained classifiers. For the emotion reference, we use
a random sample in the appropriate emotion from the Speaker
2 test set. For the speaker identity reference, we use the paired
audio sample.

Table 2 shows the classification results and Figure 2 shows
the confusion matrices. Both models achieve greater than 96%
accuracy on speaker identity, showing their ability to retain
speaker identity in synthesized samples. However, the base-
line model performs poorly on emotion classification, achiev-
ing only a 55.1% classification accuracy. As can be seen in
the confusion matrix, many samples from the angry, happy, and
sad classes are grouped into the neutral class, demonstrating a
lack of style transfer. Our model achieves 98.3% classification
accuracy, demonstrating a much higher rate of emotion style
transfer.

Emt Acc (%) Spk Acc (%)
Bian et al. [8] 55.1 97.1

Our Model 98.3 96.9

Table 2: Results of style classification for emotion (Emt) and
speaker identity (Spk). We use only Speaker 1 text samples for
the emotion classification.
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Figure 2: Confusion matrix for emotion classification results of
Speaker 1 synthesized samples.

We also visualize 100 embeddings (25 from each emotion)
created by the emotion classifier’s reference encoder using t-
SNE [13] in Figure 3. Our model produces much closer and
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more separable clusters due to the improved emotion style trans-
fer; the results suggest an improved disentanglement of the two
style dimensions using our model.
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Figure 3: T-SNE plots for the emotion embeddings for our
model (b) compared to the baseline (a).

3.3. Human Subject Evaluation.

We recruited eight human subjects to qualitatively evaluate our
adversarial cycle consistency model. To test style transfer, we
performed a side-by-side comparison of 20 synthesized Speaker
1 samples (5 texts in each of the 4 emotions). Subjects evalu-
ated the samples on a 7-point scale (-3 to 3) where -3 refers
to “sample A is closest to the reference emotion”. The results
show our model was consistently rated as closer to the refer-
ence (µ = 0.86), especially for the three unseen emotions in
the Speaker 1 dataset (sad: µ = 2.03, angry: µ = 0.98, happy:
µ = 0.63).

To test naturalness, we asked subjects to rate voice qual-
ity on a 5-point scale. Our model achieved a 3.29 mean opin-
ion score (MOS) while the baseline reached a 3.43 MOS. Our
model’s reduction in perceived quality may result from its more
pronounced style transfer – on neutral samples, our model (3.63
MOS) outperforms the baseline (3.40 MOS). Perhaps the style
transfer was too strong (almost exaggerated) for the other three
emotions, leading to a decrease in the naturalness score.

3.4. Speech Fidelity.

Finally, we evaluated the fidelity of the synthesized speech sam-
ples. We synthesized each Speaker 1 test text sample in each of

the four emotions, then use the Microsoft Azure speech-to-text
service to generate transcripts. The baseline reaches 15.75%
word error rate (WER) while our model achieves 16.95%. Sim-
ilar to naturalness, our model’s improved emotional expres-
siveness may be the cause of its lower performance since the
emotion can serve to confound the automatic speech recogni-
tion system. We also believe that improved fidelity could be
achieved with a more powerful vocoder such as WaveNet [14].

3.5. Comparison with Bian et al. [8]

We believe the baseline model’s sub-optimal performance stems
from the limitations of the intercross training procedure. Since
the procedure only presents combinations of style classes that
exist in the dataset (e.g. entries with a check-mark in Table 1),
unrepresented combinations (e.g. the gaps in Table 1) do not
impact the model loss and, thus, are not accounted for during
backpropagation. By training on unpaired triplets with random
references, our cycle consistency training scheme ensures each
combination of style class (e.g. each entry in Table 1) is seen
during training, forcing the model to learn to create speech for
every style combination.

4. Conclusion
We present an adversarial cycle-consistent training procedure
for multi-reference neural TTS stylization on disjoint datasets.
Because recording training samples for new style classes is
labor-intensive, transferring style from one dataset to another
(including disjoint datasets) is an appealing feature for TTS sys-
tems. Using our adversarial cycle consistency training scheme,
we achieve a much higher rate of style transfer for disjoint
datasets than previous models. We show our model provides
a 78% improvement in style transfer (based on emotion clas-
sification) over an existing method with minimal reduction in
fidelity and naturalness.
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