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Abstract
Prosody Transfer (PT) is a technique that aims to use the
prosody from a source audio as a reference while synthesis-
ing speech. Fine-grained PT aims at capturing prosodic aspects
like rhythm, emphasis, melody, duration, and loudness, from a
source audio at a very granular level and transferring them when
synthesising speech in a different target speaker’s voice. Cur-
rent approaches for fine-grained PT suffer from source speaker
leakage, where the synthesised speech has the voice identity of
the source speaker as opposed to the target speaker. In order
to mitigate this issue, they compromise on the quality of PT.
In this paper, we propose CopyCat, a novel, many-to-many PT
system that is robust to source speaker leakage, without using
parallel data. We achieve this through a novel reference encoder
architecture capable of capturing temporal prosodic represen-
tations which are robust to source speaker leakage. We com-
pare CopyCat against a state-of-the-art fine-grained PT model
through various subjective evaluations, where we show a rela-
tive improvement of 47% in the quality of prosody transfer and
14% in preserving the target speaker identity, while still main-
taining the same naturalness.
Index Terms: Neural text-to-speech, fine-grained prosody
transfer, many-to-many prosody transfer.

1. Introduction
In recent times, neural text-to-speech (NTTS) methods have sig-
nificantly improved the naturalness of synthesised speech ob-
tained from TTS systems [1–8]. In this paper, by NTTS sys-
tems, we refer to a subset of NTTS systems that predict mel-
spectrograms from text, followed by a neural vocoder as pro-
posed in [4]. As an extension to NTTS, neural prosody transfer
techniques [9–14] were introduced which use the prosody from
a source audio as a reference when synthesising speech, for ex-
ample, in a different, target speaker’s voice.

There have been several approaches proposed for prosody
transfer (PT), and they can be classified into: 1) Coarse-Grained
Prosody Transfer (CPT) techniques [9–12] and 2) Fine-Grained
Prosody Transfer (FPT) techniques [13, 14]. While CPT tech-
niques focus on capturing sentence-level prosodic features like
style or emotion, which can be transferred across sentences
of different text, FPT techniques focus on capturing prosodic
features like rhythm, emphasis, melody, and loudness, which
can not necessarily be transferred between sentences of differ-
ent text. Both CPT and FPT techniques get latent representa-
tions from either, a mel-spectrogram [9–13] or hand-crafted fea-
tures [14] known to have a strong correlation with prosody, and
use them to condition the NTTS system. In CPT methods, the
latent representation is in the form of a single time-independent
vector, while in FPT methods, time-dependent latent represen-
tations are obtained. The time-dependency of latent represen-

tations in FPT can be either at the phoneme level or the mel-
spectrogram frame-level [13]. In our work, we propose a novel,
frame-level FPT model, capable of transferring prosody from
any source speaker to a fixed set of target speakers.

While training, PT methods generally use latent represen-
tations and speaker embeddings obtained from a reference mel-
spectrogram, to condition the NTTS system predicting the same
mel-spectrogram. At inference, the speaker embedding of a dif-
ferent speaker is used to condition the NTTS system, to synthe-
sise speech in a target speaker’s voice. Since the input to getting
the conditioning and the output from NTTS is the same whilst
training, if the latent representations have enough capacity, the
NTTS system can learn to depend on the latent representations
for deciding the speaker identity with which it should generate
the output and can ignore the speaker embedding. During in-
ference, this results in the synthesised speech having more of
the source speaker’s identity than the target speaker’s identity;
we refer to this phenomenon as source speaker identity leakage.
While CPT methods have lesser capacity owing to the time-
independent nature of their latent representation, they have lim-
itations in the granularity of PT they can achieve. FPT methods
tend to have more capacity and they can achieve PT of very fine
granularity; however, they have an increased chance of source
speaker leakage. Our work proposes a novel NTTS architec-
ture for FPT that is robust to source speaker leakage while still
obtaining a high quality of fine-grained PT.

In this work, we propose CopyCat (CC), a novel, fully par-
allel, frame-level, FPT model capable of transferring prosody
from any source speaker to a fixed set of target speakers,
while being robust to source speaker leakage. We make the
model fully-parallel by using oracle phoneme durations ob-
tained through forced alignment between the text and source
audio, as opposed to using an attention mechanism commonly
used in sequence to sequence models. We compare our method
to [14] through various evaluations. We show that CC obtains a
relative improvement of 47% in the quality of PT, and 14% in
maintaining the target speaker’s identity, while preserving the
same level of naturalness. Our subjective evaluations show that
para-linguistics like breaths are being transferred by CC which
is not possible in [14].

2. CopyCat
Our CopyCat model takes upsampled phonemes, the corre-
sponding mel-spectrogram, and speaker embeddings, as input.
In Section 2.1, we describe the architecture of the speaker clas-
sifier used to get the speaker embeddings. In Section 2.2, we
describe the architecture of the CopyCat model and how it uses
the aforementioned inputs. We describe the training and infer-
ence methodology in Section 2.4.
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Figure 1: Figure (a) shows the architecture of the speaker classifier used to obtain the speaker embeddings used by the CopyCat model.
Figure (b) shows the architecture of the proposed CopyCat model and its three main components, namely, the reference encoder (φ),
the phoneme encoder, and the parallel decoder (θ).

2.1. Speaker Classifier

CopyCat uses speaker embeddings for identifying the speaker
identity with which it must generate the output. To obtain these
embeddings, we trained a speaker classifier with a bottleneck
as shown in Figure 1a. The model takes a mel-spectrogram as
input and provides logits for each speaker class as output at the
utterance-level. The time-independent representation it learns
at the bottleneck layer is used as the speaker embedding, Es,
for a given mel-spectrogram, X . We use a stack of 2D convolu-
tional layers to reduce the dimensions along both the time and
frequency axes, followed by a GRU layer along the shortened
time axis. We use the last state from the GRU layer and pass it
through the bottleneck dense layer and use the resultant output
as, Es. We project Es to match the number of speakers in {S},
using a dense layer and apply softmax to get the probability,
as = p(cs = s | X) ∀s ∈ S, where cs is the speaker identity
of X . We use cross-entropy loss [15] to train the model.

2.2. Model Architecture

The CC model in Figure 1b consists of three components, 1)
Phoneme Encoder that learns phoneme encodings, 2) Refer-
ence Encoder that learns prosodic representations, and 3) Paral-
lel Decoder that generates mel-spectrograms using the phoneme
encodings, prosodic representations, and speaker embeddings.

2.2.1. Phoneme Encoder

The phoneme encoder has a similar architecture to the character
encoder in [4]. The input phonemes are upsampled using forced
alignment to match T , the number of frames in X . We do this
by aligning the phonemes and audio as described in [14], which
provides us with the duration of each phoneme. Using these
durations, we upsample the phonemes to match the number of
mel-spectrogram frames aligned with them. These upsampled
phonemes are given as input to this layer to get phoneme en-
codings, Y = [y0,y1, . . . ,yT−1].

2.2.2. Reference Encoder

The reference encoder obtains temporal prosodic representa-
tions from a given mel-spectrogram, X . We use these represen-
tations to condition the parallel decoder. The reference encoder
consists of the following blocks.

Convolutional Layers with Instance Norm: Instance normalisa-
tion can be used to reduce the presence of stationary features
like speaker identity from X [16]. It is based on the hypothesis
that the constant factor in each of the channels is speaker iden-
tity, which can be removed by normalising each channel in the
input batch by its mean and standard deviation. Firstly, we take

the mean and standard deviation along each channel axis after
convolution,

µc =
1

N

N−1∑
i=0

Kc[i], ∀c ∈ C, (1)

σc =

√√√√ 1

N

N−1∑
i=0

(Kc[i]− µc)2, ∀c ∈ C, (2)

where Kc ∈ RU×V is the output from the c-th channel after
convolution, C is the set of all output channels, and N = U ∗
V , the number of elements in Kc. Then, we normalise each
element in Kc,

K′c[w] =
Kc[w]− µc

σc
, ∀c ∈ C. (3)

We applied 3 of such convolution layers, followed by a bi-
directional GRU, whose hidden-states we represent as Zin ∈
RT×H , whereH is the size of the hidden states. We refer to the
set of all parameters used in this block to be {γ}.

When mel-spectrograms of audio samples that sound sig-
nificantly different from the training data are given, Zin tends
to be sparse, making it difficult for the decoder to transplant the
prosody on a new speaker’s voice. To mitigate the sparseness,
we made this block a variational encoder, as described below.

Conditional Variational Encoding: To get a dense time-
dependent latent prosodic representation, Z ∈ RT×H , we con-
dition both the encoder, qφ(Z | X,Y,Es), and the decoder,
pθ(X | Y,Z,Es), in a VAE [17, 18] with the same conditions.
We assume a prior distribution, p(zi) = N (zi; 0, I)∀ zi ∈ Z.
We define {γ} ⊂ {φ} and train the model to maximize the ev-
idence lower bound (ELBO) defined in Equation 4, where α is
used as the anneal factor to avoid posterior collapse [19].

L(pθ, qφ) = Eqφ(Z|X,Y,Es)[log(pθ(X | Y,Z,Es))]

− α
T−1∑
i=0

DKL(qφ(z
i | X,Y,Es) || p(zi)). (4)

Bottleneck Encoder: During training, the decoder can learn
to depend on Z = [z0,z1, . . . , zT−1] to provide the speaker
identity while disregarding other conditionings. This results in
source speaker identity leakage. Empirically, we found that if
the capacity of the hidden dimension, H , was too small, it de-
graded the quality of PT, while a large H resulted in source
speaker leakage. We noted that prosody can be considered to
vary across a few frames. Therefore, we introduced a temporal
bottleneck [20], which reduces the amount of information flow-
ing from the reference encoder to the decoder along the time
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axis. It forces the decoder to depend on other conditioning for
the phonetic and speaker identity information while depending
on the output from the bottleneck encoder just for prosodic in-
formation.

We downsample Z along the time axis at a fixed rate τ
to get Z↓ ∈ RdT/τe×H and then upsample Z↓ to length T
to get Ẑ ∈ RT×H . Since the input to this layer is Z, which
is sampled from the hidden states of a bi-directional GRU, we
first split Z along the hidden dimension into matrices, Z→ and
Z← ∈ RT×H/2, to represent the forward and backward hidden
states, respectively. We now get, Z↓→ = [zτ−1

→ ,z2τ−1
→ , . . . ],

and Z↓← = [z0
←,z

τ
←,z

2τ
← , . . . ]. We concatenate Z↓← and Z↓→

along the hidden dimension to get Z↓ which we upsample by
replication at the rate τ to get Ẑ.

2.2.3. Parallel Decoder

The parallel decoder consists of a stack of 3 convolutional lay-
ers followed by a bi-directional GRU. The decoder predicts the
output mel-spectrogram, X = [x0,x1, . . . ,xT−1], given the
phoneme encodings, Y , the latent representation, Ẑ, and the
speaker embedding, Es. This can be represented by modifying
the first term in Equation 4 as,

pθ(X | Y, Ẑ, Es) =
T−1∏
t=0

pθ(x
t | Y, Ẑ, Es). (5)

As both the input and output from the decoder are of the same
length, there is no need for an attention layer to align the se-
quences. Since, we have information available both in the for-
ward and backward directions through the bi-directional GRU,
we do not introduce auto-regression to avoid biasing the model
in a particular direction of decoding.

2.3. Discriminator

To improve the segmental quality of the samples produced by
our CC model, and further maximize the ELBO, we introduce a
discriminator D to fine-tune the model using adversarial train-
ing. We use the self-attention discriminator proposed in [21]
and the hinge version of the adversarial loss [22], both of which
have provided good results in image generation [23] and text-
to-speech [24] tasks, as shown below.

LD =− EX∼pdata [min(0,−1 +D(X))]

− EX̂∼pθ [min(0,−1−D(X̂))].

LG =− EX̂∼pθ [D(X̂)].

(6)

Here, G = {φ} ∪ {θ} is the generator. It is composed of the
encoder φ and the decoder θ defined in Section 2.2. X are real
mel-spectrograms and X̂ are synthetic mel-spectrograms pro-
duced by G. Since our goal is to improve segmental quality,
we encourage the discriminator to pay attention to short-term
transitions in the audio by feeding a random window of 32 mel-
spectrogram frames as input. Owing to the small random win-
dow size, this approach has the advantage of being faster and
robust to overfitting when compared to methods using full mel-
spectrograms, as the discriminator can then fed with a larger
input batches.

Evaluation Task CC MSAP SSAP Ref
Naturalness 60.59 60.63 60.63 73.59
Speaker Similarity* 65.25 56.67 N/A 38.93
Prosody Transfer* 72.74 47.25 N/A N/A

Table 1: Mean scores obtained in the evaluations. * shows tasks
in which CC obtained a statistically significant improvement.

2.4. Training & Inference Methodology

2.4.1. Training

We train the model in 2 steps, 1) initial training and 2) adver-
sarial fine-tuning. During both the steps, the reference mel-
spectrogram and the output mel-spectrogram are the same. Dur-
ing the initial training step, we train the model by replacing the
first term in Equation 4 by Equation 5. We linearly increase the
α coefficient of the KL-divergence term from 0 to 1. During
the adversarial fine-tuning step, we add the generator loss term,
LG, in Equation 6 to the loss from the initial training stage and
the discriminator is trained using, LD , in Equation 6.

2.4.2. Inference

Since we trained a speaker classifier, the embeddings for mel-
spectrograms with similar speaker identities are placed close to
each other in the embedding space. During inference, instead
of using the same Es as input to the encoder and the decoder
as done in training, we use the centroid of the target speaker,
Evc =| V |−1 ∑

v∈V Ev , where V is the set of all utterances
in the training set of a target speaker, as conditioning to the
decoder to get, X̃ , the prosody transferred spectrogram with
speaker V ’s identity. Note that the inputs to the encoder remain
unchanged.

3. Experiments and results
3.1. Data

We conducted experiments on an internal US English dataset
of long-form recordings. The training dataset consisted of a
combined total of 35 hours of long-form data recorded by 5
female speakers. A combined total of 6.5 hours of long-form
data from various sources recorded by 12 female speakers was
used as the test dataset. Those 12 speakers were not a part of
the training dataset. We also had our test dataset recorded by
speaker from the training dataset which was used only for the
naturalness evaluation and not to train our models.

To train the speaker classifier, we used the LibriSpeech
dataset [25], with 1000 speakers. None of the speakers in our
training set or test set were part of the LibriSpeech dataset.

3.2. Evaluations

We evaluated CopyCat against a state-of-the-art model in FPT
[14]. We trained both a single-speaker aggregated prosody
model (SSAP) as described in [14], and a multi-speaker aggre-
gated prosody model (MSAP), by conditioning the decoder in
SSAP with the same speaker embeddings that are used by CC.
We compared these systems through 3 different evaluations and
used p−values from pairwise two-sided Wilcoxon signed-rank
tests to evaluate the statistical significance of the results.1

3.2.1. Naturalness

The systems are compared through a MUSHRA test for natural-
ness [26]. 25 American English speakers were presented with

1Samples will be shared here.
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Figure 2: Violin plots of scores obtained in the evaluations

the same 100 test cases. Each test case consisted of 3 audio
samples, one for each of the 3 systems, and a sample recorded
by the target speaker. The listeners were asked to rate each sys-
tem in terms of naturalness of speech on a scale of 0 to 100.
SSAP is a many-to-one prosody transfer system, and since we
had test set recordings for only 1 speaker from the training set,
we evaluated naturalness only for this case. As shown in Ta-
ble 1 and Figure 2a, CC obtains a MUSHRA score distribution
that is statistically similar (p−value > 0.05) to the MUSHRA
score distributions of MSAP and SSAP. This is of interest as CC
is a fully parallel, non-autoregressive model, and is less com-
plex than Tacotron like models, SSAP and MSAP. Since the
MUSHRA score distributions for both MSAP and SSAP are
statistically similar (p − value > 0.05), we discarded SSAP
from future evaluations. This enabled us to evaluate MSAP and
CC in further evaluations while having each of the 5 speakers
in the training set as target speakers.

3.2.2. Speaker Similarity

In this evaluation, 25 American English speakers were pre-
sented with 100 test cases; 20 test cases from each of the 5
target speakers. Each test case consisted of 3 audio samples
from CC, MSAP, and the prosodic reference audio sample from
the test set. The listeners were also presented with a randomly-
picked audio sample of the target speaker’s voice. They were
asked to rate each of the samples presented on their closeness
to the voice identity of the target speaker on a scale of 0 to 100.
From Table 1 and Figure 2b, it can be seen that CC improves on
MSAP by a statistically significant 14% (p − value < 10−3).
On inspection of samples in which MSAP obtained a low score,
it was found that MSAP struggled with maintaining the iden-
tity of one target speaker for whom we had the least amount
of training data. We conjecture that MSAP needs more data
to maintain speaker identity than CC. We believe that CC out-
performs MSAP due to the parallel decoder having a simpler
architecture than MSAP, and therefore requires lesser data.

3.2.3. Prosody Transfer

We presented 9 linguists with 100 test cases; 20 test cases from
each of the 5 target speakers. Each test case consisted of a
reference sample from an unseen source speaker, and prosody
transferred samples from CC and MSAP, in the target speaker’s
voice. The listeners were asked to score each of the samples
on a scale of 0-100 on how closely the sample follows the ref-
erence’s prosody. When rating the systems, the linguists were
asked to focus on: rhythm, emphasis, syllable length, melody,
and loudness. They were also asked to consider breaths as a
part of prosody for this evaluation. As can be seen from Ta-
ble 1 and Figure 2c, CC shows a statistically significant 47%
improvement over MSAP in this test (p − value < 10−3).

Since we want to evaluate the performance of the models on
PT, just for this evaluation, we removed 8 test cases from
the 100, in which MSAP exhibited failure modes unrelated to
prosody, such as, skipping phonemes and lost attention. This
was favourable to MSAP in the prosody evaluation, as opposed
to our system. Both the violin plot shown in Figure 2c and
the PT scores in Table 1 were computed after the removal of
the aforementioned test cases. We hypothesize that CC out-
performs MSAP because the latent representations are obtained
from a mel-spectrogram, which has more information than just
the pitch and energy. CC also does not suffer from errors in
pitch extraction, which can cause sudden changes in prosody
in MSAP. We do not normalise the latent representations, ei-
ther by speaker identity or per utterance, which was a hindrance
for MSAP in samples where the reference audio had changes
in emotion or prosody. Transfer of breaths also helped CC get
a better score than MSAP, because MSAP modelled silences in
place of breaths, resulting in a change of perceived emotion.

3.2.4. Cycle Consistency

We also checked for cycle consistency in CC [27]. We trans-
ferred prosody from a source speaker A to target speaker
B, and obtained latent representations, ẐA→B . Then the
synthesised mel-spectrogram with speaker B’s identity is re-
encoded through the reference encoder to get latent repre-
sentations, ẐB→A. We defined Cycle Consistency Loss as∣∣∣ẐA→B − ẐB→A∣∣∣. The cycle consistency loss for CC over the

training set was 10−6 ± 6 ∗ 10−7. This shows that the latent
representations for the same linguistic content and prosody are
the same irrespective of the speaker identity. While a low cy-
cle consistency loss is a necessary, yet, insufficient condition
to claim that CC disentangled source speaker identity while re-
taining prosody, it is a strong metric when juxtaposed with the
results from previous sections to show that the representations
are robust to speaker leakage.

4. Conclusions
We proposed CopyCat, a novel many-to-many FPT method
which is robust to source speaker leakage. We presented
a reference encoder capable of obtaining, temporal speaker-
independent prosodic representations from a mel-spectrogram.
We used these prosodic representations, upsampled phoneme
encodings, and speaker embeddings to condition the parallel de-
coder. The model was fine-tuned using a GAN-based discrimi-
nator to improve the segmental quality. CopyCat was evaluated
against an existing state-of-the-art technique in prosody trans-
fer through various evaluations, where it shows a significant im-
provement in the quality of prosody transfer and speaker simi-
larity while maintaining the same level of naturalness.
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