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Abstract
Phoneme-based acoustic modeling of large vocabulary au-

tomatic speech recognition takes advantage of phoneme con-
text. The large number of context-dependent (CD) phonemes
and their highly varying statistics require tying or smoothing
to enable robust training. Usually, Classification and Regres-
sion Trees are used for phonetic clustering, which is standard in
Hidden Markov Model (HMM)-based systems. However, this
solution introduces a secondary training objective and does not
allow for end-to-end training. In this work, we address a di-
rect phonetic context modeling for the hybrid Deep Neural Net-
work (DNN)/HMM, that does not build on any phone clustering
algorithm for the determination of the HMM state inventory. By
performing different decompositions of the joint probability of
the center phoneme state and its left and right contexts, we ob-
tain a factorized network consisting of different components,
trained jointly. Moreover, the representation of the phonetic
context for the network relies on phoneme embeddings. The
recognition accuracy of our proposed models on the Switch-
board task is comparable and outperforms slightly the hybrid
model using the standard state-tying decision trees.
Index Terms: automatic speech recognition, context-
dependent acoustic modeling, hybrid DNN/HMM system

1. Introduction
The realization of the phonetic co-articulation effect in
large vocabulary continuous speech recognition (LVCSR)
systems with standard Gaussian Mixture Model/Hidden
Markov Model (GMM/HMM) takes into account a context-
dependent (CD) representation of phones, usually triphones [1].
The extension of each phoneme with its left and right contexts
leads to a considerable growth of the number of possible states.
Finding the right trade-off between the model complexity and
the available data can become complicated, on the grounds that
during training many triphones are unevenly distributed or never
observed. In order to overcome sparsity issues, for long, Clas-
sification and Regression Trees (CART) marked the state-of-
the-art in ASR for tying CD phone states into generalized tri-
phone states [2]. The successful advent of neural-based mod-
els in LVCSR paved the way for the hybrid Deep Neural Net-
work (DNN)/HMM architecture [3], where the Gaussian mix-
ture based emission probabilities are replaced by normalized
scaled generalized triphone state posteriors, predicted by a dis-
criminative model.

The introduction of CART labels as output targets of the
NN model has given an important contribution to the improve-
ment of the performance of the recognition systems, maintain-
ing at the same time a two-fold dependency to the GMM sys-
tem. The frame-level state alignment for training CART derives
normally from a GMM. Furthermore, there is a mismatch be-
tween the features used for the estimation of Gaussian mixture

parameters and the one used for learning the posterior probabil-
ities of the tied-states in the neural network component.

The majority of the research works on the CD acoustic
modeling in connection with the hybrid approach aims to ei-
ther integrate the context directly into the neural network [4, 5],
or to eliminate the dependency to the GMM system. It is shown
that the initial alignments to the context-independent (CI) states
for the standard tree-based clustering approach can be provided
by a flat-started DNN [6]. Similar approaches design the set of
CD targets by clustering the activations of a CI DNN [7, 8].
There are also different possible training criteria for the state-
tying algorithm, such as Kullback-Leibler divergence [9, 10],
entropy [11], and based on DNN and classification error [12].
The elimination of the state-tying decision trees is the topic of
research also for end-to-end models such as CTC where a CD
embedding network is applied instead [13].

The common trait between most of the mentioned works
is a phone clustering principle and the necessity of having one
more training and optimization step. It is important to under-
line that in addition to the supplementary time and resource
effort, another crucial concern regarding this further modeling
approach is how the set of clustered states can affect the deci-
sion boundaries in the final neural network, which learns the
probability distribution over their posteriors. This is especially
true when the classic phonetic decision trees are involved. The
relative heuristics regarding the choice of the questions or max-
imum number of leaves can affect directly the definition of the
set of class labels, which, if not well-defined, can lead to over-
fitting problems [14].

In this work, we propose a CD acoustic modeling for the hy-
brid approach, which disposes of the necessity of an additional
phone clustering step for the determination of the HMM state
inventory. The resulting model is partitioned into separate com-
ponents, trained conjointly, and corresponding to one of the fac-
torized elements of the joint probability of the center phoneme
state with its left and right phonetic contexts. Depending on
the type of decomposition, each component learns a posterior
probability distribution over phonemes and phoneme states in
mono-, di- and triphone context. We show that for the Switch-
board task the recognition system built upon our direct context
integration approach with no state-tying clustering can obtain
a similar performance to a hybrid model using standard tying
based on CART.

2. Formulation of the Problem
The statistical formulation of automatic speech recognition task
maximizes the a-posteriori probability of a word sequence wN1
of length N given the acoustic feature sequence xT1 of length
T , with T � N , based on Bayes decision rule [15]:

xT1 → w̃N1 (xT1 ) = argmax
wN

1

{
p(xT1 |wN1 ) · p(wN1 )

}
· (1)
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The acoustic-phonetic component p(xT1 |wN1 ) of Eq. (1), in the
standard HMM with generative approach and involving a se-
quence of triphone states sT1 is formulated as:

p(xT1 |wN1 ) =
∑
sT1

T∏
t=1

p(xt|st, wN1 ) · p(st|st−1, w
N
1 )

=
∑
sT1

T∏
t=1

p(xt|st, φM1 , wN1 ) · p(st|st−1, φ
M
1 , w

N
1 ),

where φM1 represents a suitable triphone sequence of length M
corresponding to the word sequence.

3. Integration of the Context
Denote by {φ`, φc, φr}t the set of left, center and right
phonemes of the aligned triphone at time frame t. Each
phoneme consists of three HMM states, and each state can
be associated with a state class c(st, wN1 ) = {φ`, φc, φr, i}t,
where i enumerates the HMM state of the corresponding tri-
phone. The likelihood of generating a feature vector x at time
frame t given a triphone, can be written as:

p(xt|st, φM1 , wN1 ) = p(xt|c(st, wN1 )) = pt(x|φ`, φc, φr, i)·

For simplicity, we use the parametrized probability distribution
p and its further denotation pt at time frame t, interchangeably.
By applying Bayes identity we have:

p(x|φ`, φc, φr, i) =
p(φ`, φc, φr, i|x) · p(x)

p(φ`, φc, φr, i)
· (2)

Let σc be the current HMM state within the center phoneme,
the CD neural network should ideally model the joint proba-
bility of σc with the left and right phonetic contexts appearing
in the nominator of Eq. (2), which can be written through the
following mapping as:

p(φ`, φc, φr, i|x)→ p(φ`, σc, φr|x)· (3)

4. Different Decompositions
The joint posterior probability distribution of Eq. (3) would de-
mand a high number of parameters and an infeasible memory
requirement, if conceived as the output of a neural network. One
possible solution is to obtain a factorization into CD probabili-
ties, by applying the classic Markov chain rule [16].

4.1. Diphone

The emission probability defined for the diphone model, as
shown in Fig. 1a, is obtained by conditioning only on the left
phonetic context. Starting with the modified version of Eq. (2),
which takes also into consideration the mapping Eq. (3) we
have:

p(x|σc, φ`) =
p(σc, φ`|x) · p(x)

p(σc, φ`)

=
p(σc|φ`, x) · p(φ`|x) · p(x)

p(σc|φ`) · p(φ`)
· (4)

4.2. Triphone Forward

In case of all triphone models, depicted in Figs. 1b to 1d, it is
possible to achieve different decompositions by having as the
start point all three entities, namely right and left contexts along
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Figure 1: The architecture of different models defined in Eqs. (4)
to (7). The left and right output layers have the respective
phoneme identities φ` and φr as targets. The target for the cen-
ter phoneme output is the CI state referred to the phoneme in-
ventory of the vocabulary.

with the center phoneme state. beginning with the right context,
the chain rule will produce a left-to-right trigram, as below:

p(x|φ`, σc, φr) =
p(φ`, σc, φr|x) · p(x)

p(φ`, σc, φr)

=
p(φr|φ`, σc, x) · p(σc|φ`, x) · p(φ`|x) · p(x)

p(φr|φ`, σc) · p(σc|φ`) · p(φ`)
·

(5)

4.3. Triphone Symmetric

Another possible decomposition starts with the center phoneme
state given the left and right contexts. The context-dependency
in the remaining factors is not taking into account the center
phoneme. By assuming that there is no interdependency be-
tween the left and right contexts, we drop the dependency to the
right context φr in the probability value p(φ`|φr, x) of Eq. (6a),
ending up with Eq. (6b). This independence assumption is valid
also for the respective prior p(φ`|φr).

p(x|φ`, σc, φr) =
p(φ`, σc, φr|x) · p(x)

p(φ`, σc, φr)

=
p(σc|φ`, φr, x) · p(φ`|φr, x) · p(φr|x) · p(x)

p(σc|φ`, φr) · p(φ`|φr) · p(φr)
(6a)

=
p(σc|φ`, φr, x) · p(φ`|x) · p(φr|x) · p(x)

p(σc|φ`, φr) · p(φ`) · p(φr)
·

(6b)

4.4. Triphone Backward

A different possible factorization starts with the left context,
leaving the center phoneme state as the single entity [4].

p(x|φ`, σc, φr) =
p(φ`, σc, φr|x) · p(x)

p(φ`, σc, φr)

=
p(φ`|σc, φr, x) · p(φr|σc, x) · p(σc|x) · p(x)

p(φ`|σc, φr) · p(φr|σc) · p(σc)
(7)
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Table 1: Different pre-training procedures for the proposed triphone model with forward decomposition (Fwd) of Fig. 1b. The outputs
of the trained architectures at monophone and diphone stages, depicted in Figs. 2a and 2b, are marked in the respective network
columns. Decoding for diphone models and Fwd follows Eqs. (4) and (5), respectively. The recognition results in terms of Word Error
Rate (WER) are over 300h Switchboard using 4-gram language model. The experiments of each row can be described as follows: (1)
- Baseline triphone model with standard state-tying, (2) - Fwd with no pre-training, (3) - Diphone model of Fig. 1a trained with no
pre-training and used for the initialization of Fwd, (4) - Pre-trained Fwd with only monophone stage, (5) Fwd with monophone and
diphone pre-training stages, (6): Similar to experiment (5) with optional inclusion of the network branch having output distribution
p(φr|σc, x).

# Model
Monophone stage Diphone stage Triphone stage

Network Network [%WER] [%WER]
φ` φc φr φ` φc φr

1 Base not applicable (n/a) 13.9
2

Fwd

- - - - - - n/a 13.9
3 - - - 3 3 - 14.8 13.9
4 3 3 3 - - - n/a 13.9
5 3 3 3 3 3 - 14.4 13.8
6 3 3 3 3 3 3 14.2 13.6
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(a) Monophone stage of rows 4 to 6.

Bi-LSTM 
Encoder

MLP

Center-state
Output

Right-context
Output

MLP

Left-context
Output

MLP

Left-context 
Embedding

Center-state
Embedding

(b) Diphone stage rows 3, 5 and 6.

Figure 2: The network architectures used in monophone and diphone stages for pre-training of proposed triphone model with forward
decomposition. The highlighted branch of the diphone network in Fig. 2b with output distribution p(φr|σc, x) is included only for
Experiment 6 of Table 1.

5. Modeling and Training Details
5.1. Model Architecture

The architecture of each model is divided into two separate
constituting parts: (1) a bidirectional Long Short Time Mem-
ory (Bi-LSTM) network which obtains an encoding of the in-
put features following the relatively well-established acoustic
modeling background [17, 18], (2) a factorized neural network
which integrates the context into the whole model. Regarding
the CD component, there are three aspects to be underlined.
The left and right phonemes of each triphone along with the
center phoneme state are represented by using an embedding
layers. Each output layer is preceded by a Multi-Layer Per-
ceptron (MLP). It is possible to organize the MLP layers with
different settings. They could be used as a shared combination
component or be located in independent flows. Experimental re-
sults over different architectures show that in case of backward
and forward model, these arbitrary choices do not implicate sig-
nificant changes in the model performance.

5.2. Multi-Stage Phonetic Training

The final models are improved by using pre-training. The
whole procedure can be defined as a multi-stage training which
builds on incremental phonetic dependencies. We start with a
monophone network and at each stage augment the context-
dependency relations to adhere to a higher acoustic-phonetic
n-gram scheme. From one stage to the following, the outputs
needed for the final factorized model are kept without further
modification. For this set of pre-training experiments on the

Switchboard task, and reported in Table 1, we took advantage
of the fact that the diphone model is actually a complete sub-
architecture of the triphone model with the forward decomposi-
tion. The experiments outcome show that with no pre-training it
is possible to obtain the same performance of the baseline model
using CART. The comparison between Experiments (3) with
only diphone and (4) with only monophone pre-training stages,
against Experiments (5) and (6) shows that the model benefits
from the three-stage training. For the proposed diphone and tri-
phone models the WER is consequently decreased from 14.8%
to 14.2% and from 13.9% to 13.6%, respectively. Furthermore,
the optional inclusion of the additional factor p(φr|σc, x) dur-
ing the diphone stage of Experiment (6), boosts both diphone
and triphone models’ performance. For more details about the
experimental setup, see Sec. 6.

6. Experimental Setting and Results
We compare the CD acoustic models described in Sec. 4
with a baseline hybrid model using the standard state-tying
with CART. All models are trained and evaluated over 300h
Switchboard-1 Release 2 (LDC97S62) [19] and Hub500 data
(LDC2002S09), respectively, with the aid of RETURNN and
RASR toolkits [20, 21].

6.1. Setting

The frame-wise state alignment for training derives from a
GMM/HMM system relying on CART. Our proposed approach
makes use of a state inventory consisting of 136 state labels
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Table 2: Different real time factor (RTF) values for comparable
average number of states per frame during time synchronous
prefix tree search for the triphone models with CART-based
state-tying (Base) and forward decomposition (Fwd).

LM Model #States #Trees RTF

4-gram
Base 17345 113 0.5

Fwd 15617 75 12.18

LSTM
Base 58504 179 5.59

Fwd 61753 199 13.0

corresponding to 45 phonemes with three states and the single-
state silence entity. For the baseline model, a set of 9001 CART
labels are considered.

Both baseline and proposed CD models use a Bi-LSTM
encoder comprising 6 forward and backward layers of size
500 with 10% dropout probability [22]. The input speech sig-
nal to the encoder is represented by 40-dimensional Gamma-
tone Filterbank based features [23], optionally concatenated
with i-vectors of dimension 200 for a subset of the conducted
experiments [24]. All models share the same set of training
hyper-parameters and are trained with frame-wise cross-entropy
criteria and Adam optimizer with Nesterov momentum [25].
By means of Newbob scheduling, the initial learning rate of
5× 10−4 with a decay factor of

√
0.8 is controlled by using the

cross-validation frame error rate and decreased to a minimum
value of 5 × 10−6. For the regularization, an L2 weight decay
with constant 0.01, gradient noise with a variance of 0.3 and
the focal loss factor of 2.0 are adopted [26, 27]. Each CD model
is trained for 80 hours. The pick performance for the baseline
model is obtained after 24 epochs, requiring 8.5h less than the
best proposed CD model. Concerning the proposed approach,
the one-hot encoding of the left and/or right phonemes and the
center phoneme states are projected by using linear layers of di-
mension 10 and 30, respectively. Furthermore, The prior quanti-
ties appearing in the denominator of Eqs. (4) to (7) are estimated
by averaging over the output activations of the network using a
subset of the training set.

On the recognition side, we considered both 4-gram and
LSTM language models [28, 29, 30]. The prior scales for each
factor and the LM scale are tuned by using a grid search. The
real time factors of two baseline and forward models are com-
pared in Table 2. Forwarding all possible context combinations
in batch mode gives an important contribution to the optimiza-
tion of our approach. However, we aim to proceed with other
optimization methods as a future work.

6.2. Results

The experimental results for the CD models of the proposed
approach show that different decompositions obtain similar per-
formance. The triphone model with forward decomposition out-
performs slightly the hybrid baseline model. The improvement
is maintained also when a different LM or i-vector adaptation
are applied. We believe that the performance drop in case of
symmetric model derives from the simplifying assumption re-
garding no interdependency between the two contexts, as dis-
cussed in Sec. 4.

7. Discussion
For the proposed CD models, the identity of each HMM state is
uniquely defined by the identity of the center phoneme and the

Table 3: Comparison of WERs between the baseline system us-
ing standard state-tying with CART (Std. tying) and the pro-
posed CD models with forward (Fwd), backward (Bwd) and
symmetric (sym) decompositions, using 4-gram and LSTM LMs.
A subset of experiments are carried out using i-vectors (I-vec).

Context-
LM I-vec

[%WER]

Dependency
Std.

Proposed Approach
Tying

Triphone
4-gram

no 13.9
Fwd Bwd Sym
13.6 13.8 14.2

yes 13.3 12.9 − −

LSTM
no 12.7 12.6 12.8 13.8

yes 11.9 11.7 − −
Diphone

4-gram no
15.0 14.2

Monophone 17.3

position within it, along with its right and left phonemes. The
state labels in this case correspond to the set of CI states. The
consideration of a subset of factors and not the full factorized
model during the decoding leads to a considerable performance
degradation. As an example, for a symmetric model, if we use
only the normalized posterior p(σc|φ`,φr,x)

p(σc|φ`,φr)
from Eq. (6), we

observe up to 48% relative WER deterioration. Furthermore, by
including an additional target belonging to a larger context span
during the training and choosing a subset of the factors during
decoding it is possible to obtain improvement. This is for ex-
ample the case of the pre-trained diphone model of Experiment
6 of Table 1 having also the p(φr|σc, x) factor during training,
against the pre-trained diphone of Experiment 5. These obser-
vations suggest two aspects about the CD models: (1) the model
learns the context-dependencies during joint training of the fac-
tors, (2) the decision rule carried out with respect to the defined
theoretical framework is consistent and sound.

8. Conclusions

We showed that in acoustic modeling for the hybrid approach
it is possible to discard the phone clustering step. Our re-
sults indicate that direct modeling of context provides suffi-
cient smoothing ability with respect to the variability in context-
dependent phoneme statistics and performs as well as the for-
mer clustering-based approach. However, at this stage of the
work, the training of the models is still based on the frame-
wise alignment derived from a separate GMM/HMM system.
Future work concentrates on training this direct modeling ap-
proach from scratch, in order to also eliminate this secondary
dependence on phonetic clustering.
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