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Abstract

Inspired by a human speech chain mechanism, a machine

speech chain framework based on deep learning was recently

proposed for the semi-supervised development of automatic

speech recognition (ASR) and text-to-speech synthesis (TTS)

systems. However, the mechanism to listen while speaking can

be done only after receiving entire input sequences. Thus, there

is a significant delay when encountering long utterances. By

contrast, humans can listen to what they speak in real-time, and

if there is a delay in hearing, they won’t be able to continue

speaking. In this work, we propose an incremental machine

speech chain towards enabling machine to listen while speaking

in real-time. Specifically, we construct incremental ASR (ISR)

and incremental TTS (ITTS) by letting both systems improve

together through a short-term loop. Our experimental results

reveal that our proposed framework is able to reduce delays due

to long utterances while keeping a comparable performance to

the non-incremental basic machine speech chain.

Index Terms: incremental speech chain, speech recognition,

text-to-speech synthesis

1. Introduction
Automatic speech recognition (ASR) and text-to-speech syn-

thesis (TTS) systems are crucial for human-machine interac-

tion. ASR represents the speech perception system, while TTS

represents the speech production system. Researchers have

been working on ASR and TTS technology for many decades.

Current state-of-the-art ASR [1, 2, 3] and TTS [4, 5] consist

of attention-based sequence-to-sequence (seq2seq) neural net-

works for end-to-end processing.

Despite its remarkable performance, the development of

ASR and TTS has progressed more or less independently of

each other. Motivated by the human speech chain mecha-

nism [6], which has a feedback loop phenomenon between

speech production and a hearing system, a machine speech

chain framework was recently proposed for the simultaneous

development of ASR and TTS systems [7, 8, 9, 10]. In the ma-

chine speech chain framework, both ASR and TTS components

are pre-trained in supervised training using a limited amount of

labeled data. Then, by establishing a closed feedback loop be-

tween the listening component (ASR) and speaking component

(TTS), both components can assist each other in unsupervised

learning. This loop enables a machine that can learn, not only

to listen or speak but also to listen while speaking.

However, standard attention-based ASR and TTS require

attention to whole input sequences while producing out-

put. Also, current machine speech chain uses only standard

attention-based ASR and TTS components that do not work in-

crementally. Therefore, the mechanism to listen while speaking

can be done only after receiving entire input sequences. ASR

starts recognition after receiving a complete speech utterance

from TTS, and TTS begins its synthesis after receiving a com-

plete sentence from ASR. As a result, there is a significant delay

when encountering long utterances.

By contrast with machines, humans can listen to what they

speak in real-time. When perceiving their own speech, speakers

simultaneously evaluate their speech and generate their next ut-

terances based on their evaluations of their perceived speech.

Several studies have investigated the importance of auditory

feedback in speech perception as well as in speech production

[11, 12, 13]. It is done by constructing a delayed auditory feed-

back (DAF) device that extends the time between speech and

auditory perception. A study by Badian et al. [12] found that

using DAF with a 175-millisecond delay has been shown to in-

duce mental stress, which was measured as changes in biochem-

ical and cardiovascular variables. Another study also found that

the effect of a few hundred milliseconds delay can disturb peo-

ple, and this effect disappears immediately by stopping speak-

ing [13]. Thus, if there is a delay in hearing, humans are unable

to continue their speech.

In this work, we attempt to mimic the human speech chain

mechanism closely and reduce the delay of feedback within the

machine speech chain. The challenge is that the generation

or recognition, and feedback of the spoken utterances must be

done based on incomplete sequence information with minimal

delay. Therefore, we propose an incremental machine speech

chain mechanism to improve the learning quality of end-to-end

incremental ASR (ISR) and incremental TTS (ITTS) through a

short-term closed loop. The proposed mechanism also aims to

enable real-time feedback generation during inference. By en-

abling the real-time feedback generation, we can move a step

closer to achieve an ASR or TTS that is able to adapt simulta-

neously to the environment unsupervisedly, similar to human.

2. Related Works
Many researches on ISR and ITTS have been conducted in or-

der to develop a simultaneous speech translation system. The

aim is to construct a speech translation system that can mimic

human interpreters and translate incoming speech from a source

language to the target language in real-time [14, 15, 16].

Several studies on the conventional ASR approach based

on the hidden Markov model (HMM) and hybrid systems

[17, 18, 19, 20] have shown that the framework can recognize

speech in real-time. However, the HMM-based ASR cannot

perform end-to-end recognition, which is the current state-of-

the-art approach with deep learning. By contrast, research on

neural ISR is still very limited. Jaitly et al. [21] might be the

first group that has proposed a neural transducer framework that

can recognize speech segment-by-segment with a fixed window.

Another study has investigated attention-transfer ISR (AT-ISR)
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[22], which learns from attention-based non-incremental ASR

for end-to-end speech recognition with a low delay.

For TTS, developing ITTS is very challenging; the standard

framework commonly requires language-dependent contextual

linguistics of a full sentence to produce a natural-sounding

speech waveform. Existing studies of ITTS have mainly been

conducted on a model based on HMM [23, 24, 25, 26]. The

first study that attempted to synthesize speech in real-time us-

ing neural ITTS was proposed by Yanagita et al. [27]. Recently,

another ITTS was proposed based on a prefix-to-prefix frame-

work [28].

Those previously published works were only concerned

with ISR and ITTS tasks individually. By contrast, this study

investigates the joint of incremental learning between ISR and

ITTS that attempts to mimic the process in the human speech

chain. The idea here is to construct well performing low-delay

systems by evaluating the short-term output of a system using

another system and jointly improving both of them. The mech-

anism of the incremental machine speech chain is based on a

basic machine speech chain [8] and the incremental steps are

learned through attention transfer [22]. In this work, we per-

form the inference process with separated ASR and TTS, and

also inference with connected ASR and TTS to do a feedback

generation.

3. Basic Machine Speech Chain
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Figure 1: Overview of machine speech chain [8] (a). The feed-

back loop is unrolled into two processes: ASR to TTS (b) and

TTS to ASR (c).

Fig. 1 illustrates an overview of the machine speech chain

[7, 8, 9, 10]. Machine speech chain trains seq2seq ASR and

TTS together by connecting them via a loop. Both ASR and

TTS frameworks are based on seq2seq neural networks that

consist of encoder and decoder components with an attention

mechanism [29].

Machine speech chain was originally proposed for semi-

supervised learning for ASR and TTS that consists of two

stages: supervised and unsupervised training. The supervised

training stage is done to train ASR and TTS independently with

a small amount of labeled training data. The labeled training

data consist of pairs of speech and transcribed text. This stage

acts as a knowledge initialization phase for both components.

After the supervised training phase, ASR and TTS are

trained jointly by using the pre-trained models and a large num-

ber of unlabeled training data. Unlabeled data is data that either

speech without transcribed text or text without corresponding

speech. In this phase, ASR and TTS support each other by do-

ing feedback passing through a loop that connects them. The

loop between ASR and TTS consists of two unrolled processes:

• ASR-to-TTS. ASR transcribes a speech utterance X,

with a length S, into a sentence text Ŷ, and then TTS

generates a speech utterance X̂ based on ASR output Ŷ.

A training loss is calculated based on the original speech

X and TTS speech X̂.

• TTS-to-ASR. Given a completed sentence text Y with a

length T , TTS generates speech X̂ and ASR transcribes

the TTS speech X̂ into text Ŷ. A loss is calculated based

on the original text Y and ASR output text Ŷ.

4. Incremental Machine Speech Chain
An incremental machine speech chain follows the idea of the

human speech chain and the basic machine speech chain by es-

tablishing a loop that connects ISR and ITTS. The main dif-

ference is that the data passing between ISR and ITTS is done

within a short time without waiting for a complete utterance.

4.1. Components

4.1.1. Seq2seq Incremental Speech Recognition System

Seq2seq ISR works with only a low delay through short-

segment-based recognition [21, 22]. ISR predicts sentence text

Ŷ with length T from a full speech utterance X with length

S in N recognition steps. The recognition procedure for each

recognition step n = [1, ..., N ], where N = S

W
, is below:

1. Encode Xn, a segment of W speech frames from X,

where W<S.

2. Decode and predict Ŷn, a segment of Kn text tokens

from Ŷ, where 0 ≤Kn < T , until an end-of-block token

predicted by attending encoder states from Xn.

3. Shift the input window W frames and keep the model

states.

We use attention transfer ISR (AT-ISR) [22] in our incre-

mental machine speech chain to limit ISR construction com-

plexity while maintaining reliable recognition performance. At-

tention transfer teaches AT-ISR, the student model, to mimic the

alignment from the teacher model or non-incremental ASR that

provides Xn-Yn pairs based on the attention alignment. AT-

ISR learns Yn and an end-of-block token as the output target

of Xn. In the attention-based alignment, all Xn lengths are

uniform (W ), while the length of each text segment Yn can be

different.

4.1.2. Seq2seq Incremental Text-to-Speech Synthesis System

Seq2seq ITTS performs speech generation without waiting for

a complete sentence text input [27, 28]. We construct ITTS

using attention transfer from non-incremental ASR. The non-

incremental ASR provides attention-based alignment between

fixed-size speech segments and variable-length text segments,

which is sufficient to create ISR. ITTS, with attention transfer

from non-incremental ASR, learns how to process a variable-

length token sequence to produce at least W speech frames,

given the length of a speech segment in the attention-based

alignment is W . The ITTS output length here is at least W

frames because, during training, we combine subsequent speech

segments that did not align to any token (Kn=0) to the neigh-

boring segment that aligns with an output token. We apply the
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Figure 2: Unrolled processes in incremental machine speech

chain closed-loop: ISR-to-ITTS (a) and ITTS-to-ISR (b).

same alignment as ISR for ITTS to reduce components delay

incompatibility during joint training.

Speech generation with our ITTS follows the following pro-

cedure in each step n = [1, ..., N ]:

1. Encode Yn, a segment of Kn tokens from token se-

quence Y, where 1 ≤ Kn < T .

2. Decode and predict X̂n, a segment of Wn speech frames

from speech utterance X̂, where W ≤ Wn < S, by at-

tending Yn until a stop flag is predicted.

3. Shift the input window Kn tokens and keep the model

states.

4.2. ISR and ITTS Training Mechanism

Similar to the basic machine speech chain, the training of an

incremental machine speech chain also consists of two stages:

ISR and ITTS independent training without a closed-loop and

ISR-ITTS joint training with a closed-loop.

4.2.1. Stage 1: ISR and ITTS Independent-Supervised Training

ISR and ITTS are trained independently by using paired speech-

text data. Here attention transfer from non-incremental ASR is

applied to train ISR and ITTS, where both of the incremental

systems are trained using the same data as the teacher model.

4.2.2. Stage 2: ISR-ITTS Joint Training with a Short-term

Closed-Loop

ISR and ITTS support each other to jointly improve themselves

by establishing a short-term closed-loop. Here each time the

first component finishes an incremental step, it passes the out-

put to the second component. The second component then pro-

cesses the passed data in an incremental step. The closed-loop

between ISR and ITTS is unrolled into the following processes:

• ISR-to-ITTS. In each recognition step n, ISR processes

a speech segment Xn and produces an output segment

Ŷn, while ITTS reconstructs the speech segment X̂n by

encoding Ŷn, as illustrated in Fig. 2(a). Model param-

eters are updated using averaged ITTS losses from each

incremental step, as formulated in Eq. 1.

LossITTS =
1

N

N∑

n=1

LossITTSn(Xn, X̂n) (1)

• ITTS-to-ISR. For each step n, ITTS synthesizes a

speech segment X̂n by taking a text segment Yn. ISR

then transcribes the ITTS speech segment X̂n and pro-

duces Ŷn. An illustration of this process can be seen in

Fig. 2(b). Training loss is calculated based on each Yn

and Ŷn pair, which are averaged as can be seen in Eq. 2.

LossISR =
1

N

N∑

n=1

LossISRn(Yn, Ŷn) (2)

4.3. Incremental Machine Speech Chain Learning Ap-

proach

Basic machine speech chain framework was originally proposed

for semi-supervised learning, in which the intermediate output

in an unrolled feedback loop process is generated through a

greedy decoding mechanism. In this work, as our focus is not on

semi-supervised learning, we explore two approaches for inter-

mediate output generation during joint training via closed-loop:

teacher-forcing approach and greedy approach.

In the joint training that synthesizes the intermediate output

with a teacher-forcing approach, the first system in an unrolled-

loop process generates an output sequence through a teacher-

forcing decoding mechanism. The joint training here is done

using labeled data.

Joint training that generates the intermediate output with a

greedy approach is done using unlabeled data. Here, the output

generation in the first system of an unrolled-loop process is done

through a greedy decoding mechanism.

5. Experiment Setting
5.1. Dataset

We used Wall Street Journal (WSJ) [30] dataset for ASR and

TTS construction with the following setting: SI-84, SI-200, and

SI-284 as the training sets, dev93 as the development set, and

eval92 as the test set. The SI-84 set consisted of 16 hours of

speech by 83 speakers and the SI-200 set consisted of 66 hours

of speech by 200 speakers that did not overlap with SI84 set.

The SI-284 set was a combination of SI-84 and SI-200 sets. The

SI-84 and SI-284 were utilized to train the ASR and TTS dur-

ing independent training, while the SI-200 set was utilized for

systems joint training with a closed-loop. All speech utterances

had a sampling rate of 16-kHz.

For both ASR input and TTS output, speech utterances were

represented as 80-dimension log Mel spectrograms, where each

feature frame had a length of 50 ms that shifted by 12.5 ms from

the previous frame. In the ASR output and TTS input sides, the

text data was represented as a sequence of character units.

5.2. Model Configuration

5.2.1. ASR

Non-incremental ASR and ISR had identical seq2seq structures.

The encoder consisted of a feed-forward neural network layer
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Table 1: Performances of ASR (character error rate (CER)) and TTS (L2-norm2 between ground truth and predicted Mel spectrogram).

(nat-sp = natural speech as ASR input; nat-txt = natural text as TTS input; syn-sp = TTS output as ASR input; rec-txt = ASR output

as TTS input; indep-trn: independent training; chain-trn-greedy: joint training via speech chain with greedy intermediate output

generation; chain-trn-teachforce: joint training via speech chain with teacher-forcing intermediate output generation).

ASR (CER(%)) TTS (L2-norm2)

Non-incremental

(delay: 7.88 sec)

Incremental

(delay: 0.84 sec)

Non-incremental

(delay: 103 characters)

Incremental

(delay: 30 characters)Data

nat-sp syn-sp nat-sp syn-sp nat-txt rec-txt nat-txt rec-txt

ASR and TTS with independent training

indep-trn (SI-84) 17.33 27.03 17.81 44.54 0.99 1.02 1.04 3.62

indep-trn (SI-284) 7.16 9.60 7.97 19.99 0.75 0.77 0.84 1.31

ASR and TTS with machine speech chain

indep-trn (SI-84) + chain-trn-greedy (SI-200) 11.21 11.52 14.23 32.43 0.80 0.82 0.86 1.35

indep-trn (SI-84) + chain-trn-teachforce (SI-200) 7.27 6.30 9.43 12.78 0.77 0.80 0.79 1.26

(512 units) that was followed by three bidirectional LSTM lay-

ers (256 units each). Each bidirectional LSTM layer applied hi-

erarchical sub-sampling [1, 31]. As a result, an encoder state in

the encoder’s final layer represented eight speech frames. Here

we defined eight speech frames (0.14 sec) as a speech block.

The ASR decoder consisted of a character embedding layer

(256-dims), an LSTM layer (512 units) with an attention mech-

anism, and a softmax layer. We applied an MLP-scoring func-

tion that used a previously proposed multi-scale alignment and

contextual history [32] in the attention component. The text

generation during inference was done by greedy-decoding to

prevent an additional delay.

5.2.2. TTS

Our TTS followed the TTS structure in previous machine

speech chain work [8], which was a modification from TTS

Tacotron [4]. The model hyperparameters were generally same

as those in the original Tacotron. The modification was made

by replacing the rectified linear unit (ReLU) function with the

leaky ReLU (LReLU) function. The CBHG (1-D convolution

bank + highway network + bidirectional GRU) module used

K = 8 filter banks. The decoder consisted of two LSTM (256

units) layers. Our TTS generated 4 consecutive frames for each

decoding step, thus reducing the number of total decoding steps.

Our TTS implemented a speaker recognition component

similar to that in previous machine speech chain work [9]. Here

we used a DeepSpeaker model [33] with the same hyperparam-

eters as in the previous machine speech chain research. The

speaker recognition component was trained using SI-84 set.

6. Experimental Results and Analysis

Our experiment result can be seen in Table 1. The baselines

are ISR and ITTS that were trained independently using SI-84

set. The toplines are the non-incremental systems that were

trained independently with SI-284 set. The machine speech

chain mechanism for the non-incremental systems followed the

basic mechanism (see Sec. 3), while the incremental systems

followed the incremental mechanism (see Sec. 4). Here the

system evaluation was done based on natural input and syn-

thetic input. The synthetic input was generated by the target

system’s counterpart system, which was trained under the same

training condition, by processing a natural input. For the incre-

mental system, the synthetic input of an incremental step was

the output from the processing of a short segment of natural in-

put. We can consider the output of synthetic input processing as

the feedback for the system that produced the synthetic input.

The results show that our proposed framework could re-

duce the delay when encountering long utterances with a close

performance to the non-incremental speech chain. Here we al-

lowed the ISR and ITTS to take contextual inputs, which con-

sisted of look-back and look-ahead blocks [22, 27, 28, 34] that

are the blocks before and after the main segment respectively,

to enrich the information in the main input segment. The ISR

input segment for an incremental step consisted of four main

speech blocks with two look-back and four look-ahead blocks,

which we decided based on optimum delay configuration in pre-

vious AT-ISR work [22]. The ISR delay here was equal to 0.84

sec. The ITTS input segment in an incremental step consisted

of the main character block with two look-back and four look-

ahead character blocks. The ITTS main input size range was be-

tween one to four blocks, with an average of two blocks. Here

a character block consisted of five characters, the average word

length in the training data. Our best proposed incremental sys-

tems were ISR and ITTS that were trained jointly by applying

teacher-forcing approach to generate the intermediate output.

Given a natural input, the best proposed ISR achieved 9.43%

CER with a delay of 0.84 sec, while the non-incremental ASR

that was trained with the basic machine speech chain achieved

a CER of 7.27% but with a delay of 7.88 sec. The best ITTS,

given a natural input, was able to predict speech features with a

loss of 0.79 to the ground truth by only waiting for 30 charac-

ters on average, while the non-incremental TTS with the same

training data achieved a synthesis loss of 0.77 but has to wait

for 103 characters on average to begin the synthesis.

Incremental machine speech chain framework successfully

improves ISR and ITTS performances. The improvement of

ISR and ITTS occurred on both natural input and synthetic in-

put processing. It shows that the short-term feedback loop be-

tween the incremental systems are able to leverage their training

quality. Here we also demonstrated a real-time feedback gen-

eration. This is an important step to achieve a system that can

listen while speaking in real-time.

7. Conclusion
Our aim was to mimic the process of the human speech chain

by constructing an incremental machine chain and allowing ISR

and ITTS to improve together through a short-term loop. Our

experimental results reveal that our proposed framework can re-

duce the delay when encountering long utterances while keep-

ing a close performance to a non-incremental speech chain and

also outperforming the baseline ISR and ITTS.
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