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Abstract

The performance of automatic speech recognition systems can
be improved by speaker adaptive training (SAT), which adapts
an acoustic model to compensate for the mismatch between
training and testing conditions. Speaker code learning is one
of the useful ways for speaker adaptive training. It learns a
set of speaker dependent codes together with speaker inde-
pendent acoustic model in order to remove speaker variation.
Conventionally, speaker dependent codes and speaker indepen-
dent acoustic model are jointly optimized. However, this could
make it difficult to decouple the speaker code from the acous-
tic model. In this paper, we take the speaker code based SAT
as a meta-learning task. The acoustic model is considered as
meta-knowledge, while speaker code is considered as task spe-
cific knowledge. Experiments on the Switchboard task show
that our method can not only learn a good speaker code, but
also improve the performance of the acoustic model even with-
out speaker code.
Index Terms: automatic speech recognition, speaker adaptive
training, model-agnostic meta-learning

1. Introduction
Recently, the accuracy of automatic speech recognition (ASR)
has been greatly improved by the use of deep neural network
(DNN) acoustic models such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) [1–3]. However,
the performance is still unsatisfactory if the acoustic condition
of the test data is mismatched to that of the training data, such as
for speakers who have not been seen by the acoustic model. In
response, speaker adaptive training (SAT) is one of the effective
approaches to improve the performance of ASR on these condi-
tions. SAT reduces the mismatch by removing speaker variance
during training of the acoustic model, and it allows the acoustic
model to focus solely on modelling phonetic variations.

In recent years, a lot of SAT approaches have been pro-
posed. They can be divided into two groups: auxiliary feature
methods and adversarial learning methods.

Auxiliary feature methods use auxiliary features to inform
the acoustic model about speaker identity. In [4–7], speaker
i-vectors or bottleneck vectors are obtained using a pretrained
speaker recognition model. Then, acoustic features concate-
nated with the corresponding speaker vectors are fed to a DNN-
based acoustic model. In [8–10], the authors use speaker codes
which are learned together with the acoustic model to repre-
sent speaker identity information. In order to highlight the
importance of the speaker embeddings in adaptation and pro-
vide speaker identity information more effectively, [11, 12] try
to generate the speaker dependent parameters via a controller
network that takes speaker embeddings as input.

Adversarial learning is also used to perform speaker adap-
tive training. Inspired by the methods used in domain adapta-
tion [13–15], [16] optimizes the acoustic model and the speaker
classification model jointly via adversarial learning. In [17], a
reconstruction network is trained to predict the input speaker i-
vector. The mean-squared error loss of the i-vector reconstruc-
tion and the cross-entropy loss of the acoustic model are jointly
optimized through adversarial multitask learning.

Despite the progress, it is still a challenge of speaker adap-
tation to improve performance on test data as much as possi-
ble without overfitting, which is especially important in a rapid
adaptation setting when we use only a small amount of adap-
tation data. Auxiliary feature methods need speaker identity
information, but how to get the information is a question that
needs to be considered. Features similar to i-vector [4–7] are
extracted from other pre-trained models. They may not fit
perfectly with current acoustic models. Speaker code method
[8–10] is a useful way to provide information about speaker
identity. But speaker codes and the acoustic model are opti-
mized together in the same time. This training strategy makes it
difficult to decouple them. What we really want is a speaker de-
pendent code who only related to speaker identity, and a speaker
independent acoustic model who never cares about speaker
identity.

Adversarial learning methods aim to map the input speech
frames from different speakers into speaker-invariant hidden
features, so that further classification will be based on rep-
resentations with the speaker factor already normalized out.
They do not perform adaptive training on test speakers. For
example, when we already have a small number of labeled
speaker utterances, how to use those labeled utterances to im-
prove the model’s performance on unlabeled utterances of the
same speaker is something that the adversarial learning method
cannot do.

For this purpose, we introduce a meta-learning method
called Model-Agnostic Meta-Learning (MAML) [18] to the
speaker code based SAT framework. We consider automatic
speech recognition on a specific speaker as a specific task. The
acoustic model learns meta-knowledge across all speakers, and
speaker code learns task-specific knowledge which indicates the
speaker identity. We evaluated the effectiveness of the proposed
method on the Switchboard dataset. The experiments reveal that
our method can not only learn a good speaker code to improve
the performance on target speaker, but also improve the perfor-
mance of the acoustic model even without speaker code.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the speaker code method and the
standard MAML algorithm as related works. In Section 3, we
present two different methods to apply the MAML algorithm to
speaker code based speaker adaptive training. In Section 4, we
report and discuss our experimental results on the Switchboard
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Figure 1: Illustration of the model structure for speaker code
based SAT.

task. Finally, the paper is concluded in Section 5.

2. Related Work
2.1. Speaker code based SAT

Assuming that we have an (L+1)-layer DNN acoustic model
consisting of weight matrices, denoted as Wl(1 ≤ l ≤ L+ 1),
and the data come from C different speakers in total, we should
have C different speaker codes, denoted as s(c)(1 ≤ c ≤ C).
Each speaker code is simply a vector, whose dimension can be
freely adjusted. As shown in Fig. 1, these speaker codes are
fed into some particular layers of DNN through another set of
connection weights, denoted as Bl(l ∈ L), L stands for the
number of layers connected with the speaker codes. For any
layer l(l ∈ L), it receives input features from both the lower
layer l − 1 and the speaker code, the output features in these
layers are computed as follows:

hl = Wlhl−1 + Bls(c) (∀l ∈ L) (1)

In the learning process, both speaker codes and their con-
nection weight matrices are all randomly initialized. The
weights of the DNN can be initialized from a pretrained ASR
model. After that, all of these parameters are jointly learned
using the standard BP algorithm. In the testing stage, a new
speaker code is learned based on a small amount of adaptation
data for each speaker while the other parameters of the acoustic
model are frozen. The learned speaker code is used for all the
utterances of the corresponding speaker. Experiments on the
TIMIT and Switchboard task have shown that the speaker code
method is quite effective to adapt large DNN models using only
a small amount of adaptation data.

2.2. Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) [18] is a popular
meta-learning framework. MAML learns initialization param-
eters θ0 by meta training Mtrain such that the model can
perform well on query set after a few steps of gradient de-
scent. Support set S are used to calculate loss used for gra-
dient computation. Suppose model f is initialized as fθ0 , let
θN = Adapt(θ0;L,S, N) be the model parameters updated
through N steps of gradient descent where the loss function is
L computed on support set S. The optimization problem is de-
fined as Eq.(2), which minimizes the loss of fθN on query set

Q:

min
θ0

L(θN ;Q) = min
θ0

L(Adapt(θ0;L,S, N);Q) (2)

In speech applications, MAML has been applied to ASR.
For example, in [19], MAML is proved helpful for cross-
language speech recognition. The results showed that MAML
based approach significantly outperforms the state-of-the-art
multitask pretraining approach on all target languages.

3. Proposed Method
For some parametric model fθ , MAML aims to find a set of
initial parameters θ0 which can be used to fast adapt to any
new task sampled from the same distribution. In other words,
the parameters θ0 could be regarded as meta-knowledge. For
speaker code based SAT method, Wl as well as Bl are speaker
independent, so they can alse be regarded as meta-knowledge
across SAT procedure. This is our motivation of using MAML
in speaker code based SAT. We propose two different methods
to apply MAML.

3.1. SAT with zero-initialized speaker code (SAT-ZISC)

In the speaker code based SAT method, the speaker indepen-
dent parameters are denoted as θ = (W,B). The adaptation
procedure, or “inner loop”, is formulated as following:

s(c)N = Adapt(s(c)0 , θ;L,S, N) (3)

where s(c)0 is the initial speaker code for speaker c, L is the
loss function, S is the support set which contains utterances of
speaker c. During the adaptation procedure, or ”inner loop”,
we freeze speaker independent parameters θ, and update initial
speaker code by gradient descent. For example, when using
one step of gradient update, the process can be described as
following:

s(c) ← s(c) − α∇s(c)L(s
(c), θ) (4)

Generally, N adaptation steps could be applied to get adapted
speaker code s(c)N .The step size α and the number of stepsN are
fixed as hyperparameter.

When we get adapted speaker code s(c)N , we could compute
the loss on query set Q, which contains some different utter-
ances of the same speaker. And then we update the speaker
independent parameters θ by gradient descent. The final opti-
mization problem, what we referred as the “outer loop” of meta-
learning, is defined as Eq.(5):

min
θ
L(s(c)N ;Q) = min

θ
L(Adapt(s(c)0 , θ;L,S, N);Q) (5)

Fig. 2 shows the architecture of the proposed SAT-ZISC
method. Since the acoustic model weights W are initialized
from a pretrained ASR model and the connection weights B
are initialized from scratch, we initialize all speaker codes
s(c)0 (1 ≤ c ≤ C) to zero vector, so they have no effect on the
original acoustic model at the beginning, and make the training
process more stable. At the end of the ”inner loop ” learning,
the speaker code s(c)0 will be saved and used as a initial speaker
code for next inner-loop learning.

It is worth mentioning that only the speaker independent
parameters θ are updated in the ”outer loop” while the adapted
speaker code keeps unchanged, which means we do not need to
compute second derivatives as the original MAML does.
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Figure 2: Overview of the architecture of SAT-ZISC.

In the testing stage, a new speaker code is first initialized to
be zero, and then it is updated based on the derivatives of the
adaptation data as Eq.(3). The learned speaker code will be fed
to the model as in Eq.(1) for testing purpose.

3.2. SAT with meta-initialized speaker code (SAT-MISC)

Learning a good speaker code from a zero-initialized vector
might be a hard work. In this section, we employ a new mothed
called meta-initialized speaker code. Here not only the model
parameters θ = (W,B), but also the initial speaker code s0 are
regarded as speaker independent parameters. As Fig. 3 shows,
all speakers share a same initial speaker code s0. In the pro-
cess of speaker adaptation, the initial speaker code is updated
based on adaptation data of the speaker, to become a speaker
dependent code s(c)N :

s(c)N = Adapt(s0, θ;L,S, N) (6)

The final optimization problem, or ”outer loop” is different
from eq. It is formulated as following:

min
θ,s0

L(s(c)N ;Q) = min
θ,s0

L(Adapt(s0, θ;L,S, N);Q) (7)

After training, we aim to get a speaker independent model
and a initial speaker code s0 that is more suitable to speaker
adaptation.

It is worth mentioning that during the training stage, we
use second order derivatives to train the initial speaker code
s0 according to Eq.(2). This could bring a significant compu-
tational expense. For computation efficiency, some previous
works [18, 20] ignored the second-order term, which were alse
known as First-order MAML(FOMAML). But we found that
the training process was very difficult to converge when using
FOMAML in our experiments. Finally we used second-order
MAML in the SAT-MISC method, and its training speed was
about 30% slower than the SAT-ZISC method.

4. Experiments
4.1. Dataset

All experiments were performed on the Switchboard (SWB)
dataset. The training data of the SWB task [21] consists
of 20-hour English CALLHOME and 309-hour Switchboard-
I dataset, including a total of 5110 speakers. The SWB part
of NIST 2000 Hub5 evaluation set is taken as test set, which
contains 1831 utterances from 40 speakers in total. We use 20
utterances for each speaker to do speaker adaptive training. So
the final test set contains 1031 utterances.

Figure 3: Overview of the architecture of SAT-MISC.

4.2. Baseline setup

The speaker independent baseline is trained with a VGG-like
[22] model architecture based on frame-level cross-entropy cri-
terion. The inputs of the model were the 40-dimensional log
Mel-scale filter-bank features. The architecture of the model
mainly consisted of convolutional and pooling layers, and each
convolutional layer was equipped with a standard ReLU activa-
tion function. We shuffled the utterances in training data and
grouped them into minibatches with a limit of 2048 frames per
minibatch to speed up training. Stochastic gradient descent was
used as the optimizer, and the initial learning rate was set to
0.02.

The speaker code baseline is trained based on the speaker
independent baseline model. We connected the speaker code to
the first layers of each convolutional block (layer conv0, conv1,
conv5, conv9, conv13) in the VGG-like model. The connection
method is as described in the Eq.(1). The DNN weightsW were
initialized from the speaker independent baseline and the con-
nection weights B were randomly initialized. At the beginning,
we initialized the speaker code s(c) randomly, but found that the
training process was very difficult to converge. So we initialized
all speaker codes to zero vector. After that, all of the parameters
were jointly optimized. The learning rate of W and s(c) was set
to 0.02, and the learning rate of B was set to 0.4. Table 1 reports
the word error rate (WER) of the baseline models.

Table 1: Performance of the baseline models on SWB.

Method WER WERR

baseline 13.8 –
SC-baseline with adapted speaker code 13.5 2.2%

4.3. Results of the proposed method

Table 2 reports the performance of our proposed methods. For
SC-baseline model, firstly we fed the model with a zero ini-
tialized speaker code that has no effect on acoustic parame-
ters. It achieves only a relative 0.7% WER reduction (WERR)
compared with the baseline model. After training on 20 ut-
terances of the target speaker to get an adapted speaker code,
it achieves a relative 2.2% WER reduction compared with the
baseline model.
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Both of our proposed SAT methods use 2 adaptation steps
in the ”inner loop” in the MAML training stage. In the test
stage, the speaker code is optimized until it converges. As for
the SAT-ZISC method, we also fed the model with a zero ini-
tialized speaker code to test the performance of the speaker in-
dependent acoustic model. It achieves a relative 3.6% WER
reduction compared with the baseline model, which is much
better than SC-baseline. When using an adapted speaker code,
it achieves a relative 4.3% WER reduction compared with the
baseline model.

When receiving a zero initialized speaker code, the SAT-
MISC method achieves a relative 3.6% WER reduction com-
pared with the baseline model. This result shows that the per-
formance of our acoustic model has been improved. In this
method, the model has an initial speaker code, and it is a part of
speaker independent parameters. When we fed the model with
the initial speaker code, it achieves a relative 4.3% WER reduc-
tion compared with the baseline model. If we get an adapted
speaker code based on this initial speaker code, we will get
a result of a relative 5.8% WER reduction compared with the
baseline model.

Table 2: Performance of the proposed method on SWB.

Method WER WERR

baseline 13.8 –
SC-baseline with adapted speaker code 13.5 2.2%
SC-baseline with zero speaker code 13.7 0.7%

SAT-ZISC with zero speaker code 13.3 3.6%
SAT-ZISC with adapted speaker code 13.2 4.3%

SAT-MISC with zero speaker code 13.3 3.6%
SAT-MISC with initial speaker code 13.2 4.3%
SAT-MISC with adapted speaker code 13.0 5.8%

The results show that both SAT-ZISC and SAT-MISC are
able to get a better speaker independent acoustic model. This
can be considered as the benefit of meta-learning. In the pro-
cess of ASR, speaker independent acoustic model is a meta-
knowledge across all speakers. Applying MAML to speaker
adaptive training makes the model easier to extract this meta-
knowledge. When using adapted speaker code, SAT-MISC is
superior than SAT-ZISC. This result shows that learning from a
good initialized speaker code is better than learning from zero.

We also investigated the impact of the number of adaptation
steps N in proposed methods. We find that SAT-ZISC need
more steps to learn a useful speaker code than SAT-MISC. As
Table 3 shows, SAT-ZISC need 12 adaptation steps to achieve
best result while SAT-MISC need only 2 adaptation steps. This
is a proof that learning from a good initialized speaker code is
much easier than learning from zero. Table 3 also shows that
more adaptation steps will not bring further improvement, and
too many adaptation steps may degrade the performance of the
model due to overfitting.

5. Conclusions
In this study, we have proposed two speaker code based speaker
adaptive training methods with meta-learning approach. Both
of the methods use the MAML algorithm. The speaker code is
updated in the MAML’s inner loop, and the speaker indepen-
dent parameters are optimized in the MAML’s outer loop. The
results on the Switchboard task show that our methods not only

Table 3: Impact of different adaptation steps on SWB.

Method adaptation steps WER WERR

baseline – 13.8 –

SAT-ZISC

0 13.3 3.6%
2 13.3 3.6%
6 13.3 3.6%

12 13.2 4.3%
20 13.3 3.6%
35 13.4 2.9%

SAT-MISC
0 13.2 4.3%
2 13.0 5.8%
6 13.2 4.3%

learn a suitable speaker code, but also significantly improve the
performance of the acoustic model. Both of the acoustic models
of our method achieve a relative 3.6% WER reduction (WERR)
compared with the baseline model. After using adapted speaker
code, the SAT-ZISC method achieves a relative 4.3% WER re-
duction compared with the baseline, and the SAT-MISC method
achieves a relative 5.8% WER reduction compared with the
baseline. In future work, we plan to use more corpora to eval-
uate the effectiveness of SAT-ZISC and SAT-MISC extensively.
Besides, based on MAML’s model agnostic property, our ap-
proaches can be applied to a wide range of network architec-
tures.
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