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Abstract
In this paper, we present techniques to compute confidence
score on the predictions made by an end-to-end speech recogni-
tion model. Our proposed neural confidence measure (NCM) is
trained as a binary classification task to accept or reject an end-
to-end speech recognition result. We incorporate features from
an encoder, a decoder, and an attention block of the attention-
based end-to-end speech recognition model to improve NCM
significantly. We observe that using information from multiple
beams further improves the performance. As a case study of this
NCM, we consider an application of the utterance-level con-
fidence score in a distributed speech recognition environment
with two or more speech recognition systems running on differ-
ent platforms with varying resource capabilities. We show that
around 57% computation on a resource-rich high-end platform
(e.g. a cloud platform) can be saved without sacrificing accu-
racy compared to the high-end only solution. Around 70-80%
of computations can be saved if we allow a degradation of word
error rates to within 5-10% relative to the high-end solution.
Index Terms: confidence measure, end-to-end speech recogni-
tion, attention models, distributed speech recognition

1. Introduction
Recent works have focused on streaming end-to-end (e2e) of-
fline ASR systems capable of running on resource-constrained
platforms with reduced latency [1, 2, 3]. The performance of
these streaming architectures have improved significantly on
large scale corpora and are comparable in accuracy to the much
bigger speech recognition models that run on resource rich plat-
forms. However, they still lag behind these high-end speech
recognition models because of limited computational resources,
which mandates the need for model compression, quantization,
and other optimizations [1, 4, 5, 3, 6, 7, 8]. One alternative is to
adopt a distributed ASR solution with at least two ASR engines,
one low-end small-footprint ASR engine running on a resource-
constrained platform, and another high-end ASR running on a
resource-rich platform. In such scenarios, we can first route the
incoming traffic to the low-end engine, and if the quality of its
prediction is poor, the audio stream can be directed to the high-
end engine.

The above objective can be achieved if we have access to
a measure of confidence on the predicted output. Based on
the confidence score for the low-end ASR hypothesis and a
threshold value, an accept/reject decision can be made. The
hypothesis should be accepted when it is at least as accurate as
the high-end ASR prediction; otherwise, it should be rejected,
and the query is handled by the high-end ASR. It is imminent
that any low-end ASR prediction accepted results in compu-
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tation savings for the high-end ASR. This motivates us to ex-
plore utterance-level confidence measures, especially for low-
end speech recognition models.

Many approaches have been explored for word confidence
measures in the context of conventional speech recognition sys-
tems [9]. We can broadly classify them into three categories a)
methods based on posterior probabilities, b) framework of ut-
terance verification, and c) techniques using a combination of
predictor features. The first approach is non-parametric and re-
quires post-processing of posterior probabilities to obtain a con-
fidence score. Calculating accurate word posterior probability
is challenging [10], and therefore, techniques belonging to this
category investigate approximate methods to obtain the proba-
bility from a word graph or n-best hypothesis [11, 12, 13, 14].
The second category of utterance verification technique uses a
framework of statistical hypothesis testing to train two comple-
mentary models, one for null hypothesis and another for alter-
native hypothesis. Likelihood ratio testing is used to test the
two models in order to arrive at an accept/reject decision for the
recognition result. The major challenge in this approach is to
model the complex alternate hypothesis accurately [15, 16].

The last class of techniques is based on predictor features.
A binary classifier is trained to classify a word as correct or in-
correct based on a combination of features from speech recog-
nition model, which are called predictor features. The poste-
rior probability of a word being correct given predictor fea-
tures is used as a measure of confidence. Most of the works
in this direction focus on deriving increasingly discriminating
set of predictor features for the task [17, 18, 19, 20, 21, 12].
Another aspect of the predictor feature-based methods is the
choice of binary classifier. There is an increasing trend to use
neural network-based classifiers [22, 23, 19], which clearly out-
performs non-neural based classifiers.

To the best of our knowledge, this work is the first to ex-
plore utterance confidence measures in the context of e2e ASR.
We investigate two approaches for utterance-level confidence
score in this paper: a) sequence posterior probability-based
method and b) predictor feature-based technique. For the first
approach, we aggregate label-level confidence scores as pro-
posed in [24] to obtain a confidence score for the entire hy-
pothesis. However, experiments show that this score performs
poorly. We propose a simple extension of this technique, which
brings significant performance gains over the baseline method.
For the predictor feature-based method, a neural network-based
binary classifier is trained with features derived from e2e ASR.
We consider encoder output, decoder output, attention weights,
and beam scores in the experiments. Our work is the first to
utilize attention weights as well as decoder output and atten-
tion weights from multiple beams for ASR confidence measure.
Experimental results show the importance of each of these fea-
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tures and that it is possible to learn a neural confidence mea-
sure or model (NCM) from as small as ∼20 hours of speech
data (20K utterances). Finally, a novel metric is proposed to
evaluate the performance of utterance confidence measures as
a tradeoff between the overall ASR accuracy and computations
saved on a high-end platform in a distributed ASR scenario. Re-
sults show that the proposed metric is consistent with standard
metrics used in the literature for confidence measures and gives
a more meaningful evaluation of the confidence measure in a
practical scenario.

2. Utterance confidence measures
2.1. Word density confidence measure

Let {hi}ni=1 be the n-best hypotheses, and {si}ni=1 be the cor-
responding scores obtained by the speech recognition system.
Word density confidence measure (WDCM) [24] assigns a con-
fidence score to each token (word or a subword) present in the
best hypothesis as follows:

Step 1: Convert scores {si} to hypothesis probabilities after
scaling with some suitable factor a:

phi =
exp(−asi)∑n
k=1 exp(−ask)

, (1)

Step 2: For each token wk in the best hypothesis h1 =
{wk}Kk=1, compute the token confidence as:

pwk =

n∑
i=1

δ(wk, hi)phi , (2)

where δ(wk, hi) =

{
1 if wk ∈ Align(h1, hi),
0 otherwise. (3)

We can average these scores for each token to get an utterance-
level confidence score for ASR output as follows:

Cwd =
1

K

K∑
k=1

pwk (4)

2.2. Beam-scatter weighted WDCM

WDCM score for an utterance, as described in the previous sec-
tion, is often inflated. It helps if we scale the score according
to beam-scatter or relative beam probabilities. We consider the
top two beams (chosen empirically) for this purpose and define
beam scatter weighted WDCM (BWDCM) score as:

Cbwd =
1

1 + e−λ(ph1
− ph2

)
Cwd (5)

where ph1 and ph2 are top two beam probabilities respectively
obtained in Step 1 of WDCM, and λ is a tunable parameter.

Our extension of the baseline WDCM approach is sup-
ported by observation in [24] that the scores of competing hy-
potheses are among the most useful features for confidence
measure. The interpretation of beam scatter fits accordingly,
which is as follows. If the top two beams have similar ASR
scores, it means that ASR output is ambiguous, and we ac-
cordingly halve the WDCM score. A high ASR score for the
top beam, compared to the rest of the beams, indicates that the
speech recognition model is confident in its prediction. In this
case, the BWDCM score is almost equal to the WDCM score,
given that λ is sufficiently large.
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Figure 1: Proposed NCM architecture with input features from
e2e ASR. Scores, Enc, Dec and Att features shown here are
beam scores, encoder output, decoder output and attention
weights respectively, as described in Section 2.3

2.3. Neural confidence measure

Typically, a well-trained speech recognition model assigns a
high score to the top-most beam if it is well-formed and the
model is confident, and relatively lower scores for other beams.
BWDCM technique is based on this assumption and works well
in such scenarios. However, in some cases, the speech recogni-
tion models can produce almost similar scores for all the beams.
Also, speech recognition models are commonly biased to per-
form well in the development setup and can throw up different
patterns in the production setup. This can lead to violations of
some of the assumptions made in designing non-neural meth-
ods such as WDCM or BWDCM. In yet another case, we ob-
served that null hypothesis frequently appeared as the second-
best beam with a score comparable to the top-beam when our
e2e speech recognition model was biased on short queries. All
these reasons make the BWDCM method perform poorly on
several utterances.

In view of this, we propose to use neural confidence mea-
sures or models (NCM), which do not make such assumptions
and are trained with features derived from speech recognition
model ready for deployment, as shown in Figure 1. We formu-
late the utterance-level confidence measure as a binary classifi-
cation task. NCM learns to predict 1 if ASR output has no error,
otherwise 0. It is based on the observation that a well-trained
speech recognition model has a low sentence error rate. There-
fore, learning to distinguish between ASR predictions with zero
and non-zero errors should result in significant computation
savings. We make use of the following features from e2e speech
recognition model for NCM experiments:

Beam scores (Scores): These are log-probability scores as-
signed by e2e ASR decoder to each beam. Word density-based
approaches accept or reject an utterance based on some post-
processing of these scores. We generalize the approaches to
some extent by using neural network with these scores as input.

Encoder output (Enc): It acts as a summary of the acoustic
input to the speech recognition model. [21] shows that acoustic
embedding is a useful feature for confidence score estimation.
We expect decoder output, described next, to capture this infor-
mation. However, experiments show that using both the features
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results in significant gains over NCM using any one of the two
features.
Decoder output (Dec): We accumulate decoder output logits
(top-K only) for each token in the top-most beam. This is be-
cause only these scores affect beam search decoding. It also
helps in reducing the number of neural network parameters as
ASR output vocabulary size is very large.
Attention weights (Att): Attention patterns may reflect the
quality of ASR output. Attention weights in a decoding step
are typically concentrated over a small number of encoder
timesteps. Therefore, a fuzzy attention distribution may indi-
cate the possibility of an error in the output.
Multi-beam NCM: Different from previous works, we incor-
porate decoder output and attention weight features discussed
above for the rest of the beams also. We have seen in Section
2.2 that competing hypotheses are very useful source of infor-
mation. Therefore, we expect multi-beam NCM to outperform
NCM using features from top-beam only.

3. Case study: Distributed ASR scenario
In this section, as an application of this NCM, we consider a
new scenario where we use utterance confidence measures for
a distributed ASR system consisting of low-end and high-end
speech recognition models. The objective is to reduce the over-
all computational cost on the high-end ASR without sacrificing
the performance significantly.

3.1. Distributed speech recognition scenario
In this case study, we use a streaming encoder-decoder archi-
tecture with Monotonic Chunkwise Attention (MoChA) [1, 25]
as the low-end speech recognition model. The encoder con-
sists of 6 unidirectional Long Short-Term Memory (ULSTM)
[26] layers with an overall temporal sub-sampling factor of 8.
The high-end speech recognition model shares the encoder of
the low-end model, but adds a backward LSTM layer to the
top-most forward LSTM layer of the shared encoder and uses a
full-attention decoder [27, 28, 29, 30]. Our motivation for using
this kind of shared encoder architecture is that it gives us an op-
tion of transmitting only the shared encoder embeddings to the
high-end ASR, as a future work [29]. All the LSTM layers have
1536 hidden units. Decoder, for both cases, is an LSTM cell
with 1000 hidden units followed by maxout and softmax layers.
For both speech recognition systems, we use the power-mel fea-
ture [31, 6] with a power coefficient of 1/15. Output vocabulary
contains around 10K BPE subword units. Both the models are
trained jointly [29] on ∼10K hours of English internal speech
corpus described in [1]. The models are trained for around 14
full epochs using Adam optimizer. The training system was
built in-house using the Tensorflow 2 Keras APIs from scratch.
The low-end speech recognition system uses a beam size of 4,
whereas the high-end one has 12 beams during the beam search.
Model performances are evaluated on a test set with 1585 utter-
ances. The low-end and the high-end speech recognition models
have word error rates (WER) of 14.57% and 10.40%, respec-
tively, on this test set. The distributed speech recognition sce-
nario outlined in this paper is only an experimental setup to give
a more meaningful interpretation to the evaluation of different
confidence measures. This solution has not been evaluated for
latency or other requirements of a real-world production setup.

3.2. Conventional evaluation of confidence measures

Conventionally, the performance of a confidence measure is
evaluated using the receiver operating characteristics (ROC)

curve which shows the tradeoff between true positive rate and
false positive rate. Area under the ROC curve (AUC) and equal
error rate (EER), the rate where false positive and false negative
rates are equal, are popularly used. Normalized Cross Entropy
(NCE) is also widely used [9]. A better confidence measure
should have higher value of AUC as well as NCE and lower
value of EER. These metrics are good to compare any two meth-
ods but do not convey any practical meaning to the numbers.

3.3. Computation saved vs relative increase in error rate

In a distributed ASR scenario, the low-end ASR prediction is
either accepted or rejected based on the confidence score and a
threshold value. If it is rejected, the audio is transmitted to the
high-end ASR to get a new prediction. In such a scenario, we
define the computation saved (CS) as a fraction of total utter-
ances that were classified as accepted on the low-end device or
platform. A combined word error rate (WER) is calculated for
the distributed scenario, where low-end ASR prediction is used
for accepted utterances and the high-end ASR prediction is used
for rejected utterances. Relative increase in error rate (RIER)
is defined as the relative difference between WERs of the dis-
tributed ASR and the high-end ASR. When all utterances are
accepted, the combined WER approaches that of the low-end
ASR with 100% CS, and on the other extreme, it approaches
that of the high-end ASR with 0% CS when all utterances are
rejected.

4. Experiments and results
4.1. Neural confidence measure

NCM is a binary classifier with two feed-forward layers, each
having 64 hidden units and RELU non-linearity. Inputs to the
network are features derived from the low-end speech recogni-
tion model. Table 1 lists all the feature combinations used in our
experiments, along with their performance on the task. Scores
is a 4-dimensional feature vector containing all the beam scores.
Decoder output for a beam is a sequence of 10-dimensional fea-
ture vector. Three techniques were tried to summarize such
output into a fixed-length vector – averaging along temporal di-
mension, weighted average using self-attention [32], and LSTM
followed by self-attention. Adding an LSTM layer to accu-
mulate the information better did not have any significant im-
provement. Therefore, we use self-attention based weighted
averaging in all our experiments, which was marginally better
than simple averaging. Similarly, encoder output is also trans-
formed into a fixed-length vector of 1536 dimensions. Attention
weights is a sequence of 2-dimensional feature vector since we
use a chunk size of 2 for MoChA. These weights are concate-
nated with the corresponding decoder output in feature dimen-
sion before summarizing. For multi-beam NCM, we summa-
rize decoder (with attention) features for each beam separately
and then concatenate. These fixed-length vectors (depending
on feature combination) are concatenated and fed to the binary
classifier to predict a 0/1 label.

4.2. Training data for NCM

NCM is trained on the devset (20K utterances) that was used
as a validation set for the model training [21]. Input features
are obtained by running the trained low-end speech recognition
model with a beam search. If the prediction exactly matches
the reference transcription, then the NCM target is set to one,
otherwise zero. The positive class probability assigned by a
trained NCM is used to make an accept/reject decision at the
test time.
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Table 1: Comparison of utterance confidence measures using standard metrics (AUC, NCE and EER) as well as the proposed CS-vs-
RIER for a distributed ASR scenario. ‘ASR’ method in first row refer to using the sequence probability scores assigned by e2e speech
recognition models to the top-most beam as utterance-level confidence score. Input features are as described in Section 2.3

Input Features CS @ x% RIER

Scores Enc Dec Att Beams AUC ↑ NCE ↑ EER ↓ x = 0 ↑ x = 5 ↑ x = 10 ↑

ASR – – – – – 0.76 0.12 0.33 0.0 0.20 0.59

WDCM X – – – – 0.61 -0.58 0.40 0.0 0.17 0.51

BWDCM X – – – – 0.73 0.11 0.33 0.0 0.41 0.62

NCM

X – – – – 0.85 0.27 0.22 0.0 0.44 0.77

X X – – – 0.88 0.32 0.21 0.0 0.66 0.81

X – X – Top 0.89 0.36 0.19 0.11 0.69 0.77

X X X – Top 0.89 0.39 0.19 0.40 0.71 0.83
X X X X Top 0.90 0.40 0.19 0.46 0.71 0.81

X X X – All 0.90 0.41 0.18 0.51 0.71 0.80

X X X X All 0.90 0.41 0.19 0.57 0.74 0.81

Figure 2: CS vs RIER tradeoff for different confidence measures.
ASR confidence measure uses probability assigned by e2e ASR
to the top-most beam as confidence score

4.3. Results
Table 1 lists results for all our experiments. ASR confidence
measure, which uses probability assigned by (low-end) e2e
ASR to the top-most beam, gives only 20% computation saving
at 5% RIER. WDCM, a popular technique for token-level con-
fidence measure, performs poorly when utilized for utterance-
level decision. Even more surprising is the high negative NCE
score of -0.58 for WDCM, which means that using prior class
probabilities is a much better alternative. This also highlights
the effect of beam scatter due to which BWDCM score per-
forms much better than even ASR confidence measure, and is
close to the baseline NCM model (only beam scores as input)
performance with 41% CS at 5% RIER.

The CS-vs-RIER tradeoff curves for various thresholds are
plotted in Figure 2 to evaluate different confidence measure
methods. A better confidence score model should have a high
value of CS at 0% RIER. From Figure 2, NCM performs the
best with 57% computation saved at 0% RIER, whereas non-
parametric methods have 0% computation saved.

NCM consistently outperforms all the other techniques,
which is not surprising given it is a parametric model. A large
gap in the performance for ASR confidence measure (first row

in Table 1) and baseline NCM (fourth row) indicates that there
is indeed a need for calibration of the sequence probability
scores assigned by speech recognition model to the best hy-
pothesis. Performance gain for models using additional ASR
features is consistent with the importance of using a rich fea-
ture set for predictor feature-based confidence measures. NCM
trained on beam scores and decoder output has higher scores
on all the metrics than the corresponding experiment with en-
coder output. This suggests that decoder feature is much more
discriminating than encoder embedding, which is what we had
expected. Moreover, using both the features together perform
even better with 40% server computation savings at 0% RIER.
NCM performance on all the metrics except CS-vs-RIER trade-
off seems to saturate when sufficient features have been incor-
porated. However, our proposed metric is still able to distin-
guish between different versions of NCM models using features
from top-beam and multi-beam, as well as with and without at-
tention weights. According to NCM performances on standard
metrics, using attention weights or deriving features from mul-
tiple beams does not seem to be effective, which is not true.
Therefore, it is a better strategy to define a custom metric that is
consistent with the standard metrics and closely captures the
objective. Finally, NCM, with all the features, perform the
best with 57% computation saved at 0% RIER, which goes up
to 74% with a small degradation in the combined distributed
ASR transcription quality. This essentially means that low-end
speech recognition model performance for the accepted utter-
ances matches the high-end speech recognition model perfor-
mance, which can be a simple alternative to complex techniques
required to improve ASR performance on resource-constrained
low-end platforms.

5. Conclusions
In this paper, we present a new approach to compute the con-
fidence score on the predictions made by an end-to-end speech
recognition model. We incorporate features from an encoder,
a decoder, and an attention block of the attention-based end-to-
end speech recognition model in this NCM model. In the exper-
imental results, it has been shown that this new NCM model sig-
nificantly outperforms the conventional WDCM and BWDCM
approaches. In a case study of using this NCM model, the pro-
posed method results in more than 70% computation saved in
a distributed speech recognition scenario without significantly
compromising the performance.
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