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Abstract
We demonstrate that a production-quality keyword-spotting
model can be trained on-device using federated learning and
achieve comparable false accept and false reject rates to a
centrally-trained model. To overcome the algorithmic con-
straints associated with fitting on-device data (which are inher-
ently non-independent and identically distributed), we conduct
thorough empirical studies of optimization algorithms and hy-
perparameter configurations using large-scale federated simula-
tions. To overcome resource constraints, we replace memory-
intensive MTR data augmentation with SpecAugment, which
reduces the false reject rate by 56%. Finally, to label exam-
ples (given the zero visibility into on-device data), we explore
teacher-student training.
Index Terms: federated learning, on-device learning, keyword
spotting, wake word detection, non-iid data, data augmentation

1. Introduction
Keyword spotting has become an essential access point for vir-
tual assistants. Vocalized keywords such as Alexa, Hey Google,
or Hey Siri can be used to initiate search queries and issue
commands to mobile phones and smart speakers. The underly-
ing algorithms must process streaming audio—the majority of
which must be ignored—and trigger quickly and reliably when
needed.

Neural networks have achieved state-of-the-art perfor-
mance in automatic speech recognition tasks [1, 2, 3]. Ap-
plications of neural networks to keyword spotting have also
been explored, particularly within the contexts of quality im-
provement and latency reduction for low-resource environ-
ments [4, 5, 6, 7, 8, 9] and end-to-end model training [10].

Federated Learning (FL) [11] is a decentralized computa-
tion paradigm that can be used to train neural networks directly
on-device. In FL, all model updates shared by devices with the
server are ephemeral (only stored temporarily in server mem-
ory), focused (only relevant to a specific training task), and ag-
gregated (only processed collectively with updates from other
devices across the population). In conjunction with techniques
such as differential privacy [12, 13] and secure aggregation [14],
FL can integrate strong anonymity and privacy guarantees into
the neural network training process.

Federated learning provides a path to train keyword mod-
els at the edge, on real user data, as opposed to proxy data. In
contrast, centrally-trained keyword-spotting models use proxy
data, since false accepts (in which the keyword-spotter acciden-
tally triggers) are not logged.

Multiple production models have been trained with feder-
ated learning, including next-word prediction [15], emoji pre-
diction [16], n-gram language models [17], and query sugges-
tions [18] for mobile keyboards. Many of these models achieve

better performance as a result of the additional signals and unbi-
ased data available on-device. Recently, the feasibility of train-
ing keyword-spotting algorithms with FL has been explored
with smaller datasets [19].

On-device training comes with challenges, including the
fact that the quantities and characteristics of training exam-
ples vary considerably from device to device. Centrally-trained
models benefit from the ability to sample data in a controlled,
independent and identically distributed (IID) manner, resulting
in gradient updates that are unbiased estimates of the total gra-
dient for the dataset. This is not true on-device, where client
updates are biased representations of the gradient across the en-
tire population [20].

Non-IID data adversely affect convergence [21], and have
been identified as a fundamental challenge to FL [22]. Propos-
als to fit non-IID data better include optimizers that account for
client drift [23], data sharing between client devices [20], and
adaptive server optimizers with client learning rate decay [24],
among others [25].

The primary contribution of this paper is to demonstrate
that keyword-spotting models can be trained on large-scale
datasets using FL, and can achieve false accept and false reject
rates that rival those of centralized training. Using simulated
federated learning experiments on large-scale datasets consist-
ing of thousands of speakers and millions of utterances, we
address the algorithmic challenges associated with training on
non-IID data, the visibility challenges associated with labeling
on-device data, and the physical constraints that limit augmen-
tation capabilities on-device.

2. Model
This paper used the end-to-end architecture described in [8].
End-to-end trainable neural architectures have demonstrated
state-of-the-art performance in terms of accuracy as well as low-
ered resource requirements while providing a highly optimiz-
able system design [10]. The model consisted of an encoder-
decoder architecture in which both the encoder and decoder
made use of efficiently parameterized SVDF (single value de-
composition filter) layers—originally introduced in [26]—to
approximate fully-connected layers with low rank approxima-
tions. Dense bottleneck layers were used to further reduce com-
putational costs and keep the model size down at only 320,778
parameters (Figure 1).

The encoder took spectral domain features Xt as input and
generated outputs Y E corresponding to phoneme-like sound
units. The decoder model used the encoder output as input and
generated binary output Y D that predicted the existence of a
keyword. The model was fed with acoustic input features at
each frame (generated every 10ms), and generated prediction
labels at each frame in a streaming manner.
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Figure 1: End-to-end topology trained to predict the keyword
likelihood score [8]. The encoder consists of 4 SVDF-plus-
bottleneck layers, while 3 SVDF layers comprise the decoder.

Training such an architecture traditionally required frame-
level labels generated by LVCSR systems [27] to provide ac-
curate timing information. This approach to label generation is
not possible on-device, due to the large computational resources
required to store and run a LVCSR system. Therefore, while we
retained the same architecture, in our experiments we train the
system with just a binary cross entropy loss for keyword pres-
ence and did not present any supervised targets to train the en-
coder. Recent work [8] suggests a better approach to train the
encoder without LVCSR targets and will be the focus of future
work.

3. Federated Optimization
In federated learning [11], a central server sends neural models
to many client devices (such as phones). These clients process
local caches of data in parallel and send updated model weights
back to the server. The server aggregates the updates, produces
a new global model, and repeats this cycle (called a federated
training round) until the model converges.

Federated Averaging (FedAvg) [11] was used as a baseline
optimization algorithm. During each training round, indexed by
t, a subset of K = 400 client devices in the experiment pop-
ulation downloaded a global model, wt, from the server. Each
client k ∈ K had a local data cache consisting of nk examples.
The clients used stochastic gradient descent (SGD) to train over
their local examples and derive an average gradient, gk. For a
client learning rate ηc, the local client step, wkt+1, was defined:

wkt+1 = wt − ηcgk. (1)

This equation represents a single step of SGD, but client train-
ing typically involved multiple steps of SGD with a batch size
of 1. Updated client weights were sent back to the server, which
aggregated them to compute a global model update:

∆t =

K∑
k=1

nk
N

(wt − wkt+1). (2)

where N =
∑
k nk. For a server learning rate ηs, the updated

global model weights, wt+1 were computed according to:

wt+1 = wt − ηs∆t. (3)

When phrased in the form of Equation 3, FedAvg clearly con-
sists of an inner optimizer loop (SGD over gradients on the
clients) and an outer optimizer loop (SGD on averaged weight
deltas on the server).

Momentum-based variants of FedAvg were explored as
in Ref. [15, 28], in which Nesterov accelerated gradients
(NAG) [29] were applied to the server updates. The server up-
date in Equation 3 was replaced by:

wt+1 = wt − ηs(γvt+1 + ∆t). (4)

where γ is the momentum hyperparameter and vt+1 = γvt+∆t

is the forward-looking Nesterov accelerated gradient. The ad-
vantages of Nesterov momentum over classical momentum [30]
have been demonstrated in the central training setting [31], and
were expected to translate to FL.

Finally, adaptive variants of FedAvg were investigated, in
which the server optimizer function was replaced by Adam [32],
Yogi [33], or LAMB [34]. Prior works shown that adaptive per-
coordinate updates can improve convergence for FL [19, 24].
Adaptive methods have shown particular strength in envi-
ronments with heavy-tailed stochastic gradient noise distribu-
tions [35]—a common property of non-IID data in FL.

Adaptive methods replace the server optimizer loop, shown
in Equation 3, with an adaptive optimization step. As with
FedAvg, the classical momentum terms of Adam or Yogi can
be replaced with NAG as in NAdam [36].

4. Data and Simulations
Experiments were conducted using simulated federated learn-
ing with vendor-collected datasets. A total of 1.5M utterances
(1,650 hours in total) were recorded by 8,000 English-speaking
participants. Each lasted a few seconds, and most contained one
of two spoken keyword phrases. The dataset was divided into a
train set (1.3 million utterances) and an eval set (180,000 utter-
ances) with non-overlapping groups of users. IID and non-IID
configurations of the training data were prepared, while the eval
set was always used in an IID configuration.

Utterances were grouped into non-IID simulated clients in
three steps. First, data were clustered according to speaker. The
resulting clusters varied significantly in size: though speakers
provided a median of 108 utterances each, a few speakers were
associated with nearly a thousand unique examples. Next, clus-
ters were further divided on the basis of labels. Individual clus-
ters contained either positive utterances (which contained the
keyword) or negative utterances (which lacked the keyword) ex-
clusively. It should be noted that training labels were specified
on a per-frame basis, and even positive utterances contained nu-
merous frames with negative targets. Finally, the clusters were
randomly subdivided to enforce an exponential distribution of
utterances per client (nk). The final step was motivated by a de-
sire to match the training data distribution to the inference dis-
tribution, coupled with observations of power-law feature usage
among the general population.

The resulting non-IID training dataset consisted of 160,000
clusters and a median of 6.5 utterances per cluster. Individual
clusters were affiliated with individual simulated client devices
for federated learning.

For IID simulated clients, the data were randomly divided
into clusters consisting of 50 utterances. Each uniformly-sized
cluster thus included a mix of speakers and labels. The IID
training set contained 26,000 clusters of 50 utterances each.
3,675 clusters comprised the IID eval set.

5. Experiments
This section describes experiments to address the various con-
straints of on-device training. Specifically, we discuss optimiza-
tion techniques to overcome the algorithmic challenge of fitting
non-IID data, lightweight data augmentation techniques that run
with constrained on-device resources, and teacher-student train-
ing to provide labels given the inability to peek at federated data.
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5.1. Training and evaluation

Model checkpoints generated by the training tasks were peri-
odically saved and sent to a held-out set of client devices for
federated eval tasks. The train and eval tasks ran over orthogo-
nal datasets, which were constructed following the description
in Section 4. Metrics including the frame-level accuracy and
cross-entropy loss were computed on each client and averaged
on the server.

Hyperparameters were tuned and checkpoints were selected
based on the criterion of minimizing eval loss for non-IID data.
Eval loss was measured on the IID dataset described in Sec-
tion 4. Tasks were also trained on IID datasets in order to com-
pare training under the different data distributions.

Models were evaluated using false accept (FA) and false
reject (FR) rates, which were computed offline on large tests
sets consisting of negative utterances and positive utterances,
respectively. The triggering thresholds were tuned to have
FA=0.2%, approximately. FA and FR are more relevant to qual-
ity than loss, since they directly correspond to inference perfor-
mance.

5.2. Optimizers and learning rate schedules

Optimization techniques were explored for non-IID training.
First, the algorithms described in Section 3 were tuned via grid
searches. For FedAvg, ηs = 1.0 and a momentum value of
0.99 was found to work best. FedAdam and FedYogi both
converged well with β1 = 0.9 and β2 = 0.999, though Adam
worked with the default ε = 10−8 and ηs = 10−3 while Yogi
worked best with a larger ε = 10−3, ηs = 0.1, and initial ac-
cumulator value of 10−6. Experiments were also performed in
which Nesterov accelerated gradients were substituted for clas-
sical momenta.

Table 1 compares non-IID training with each server op-
timization algorithm. Exponentially decayed client learning
rates were used with FedAdam and FedYogi, while FedAvg
worked better with constant client learning rates. The adap-
tive optimizers had a decisive advantage over FedAvg on FR.
Replacing classical momentum with NAG benefitted FedAvg
and FedAdam, but FedYogi with classical momentum had
the lowest FR overall.

Table 1: Comparisons of offline false accept and reject rates for
various optimizers on non-IID data.

Optimizer FA [%] FR [%]

FedAvg 0.21 8.76
FedAvg + NAG 0.21 4.09
FedAdam 0.19 1.95
FedAdam + NAG 0.21 1.68
FedYogi 0.19 1.39
FedYogi + NAG 0.20 2.11

Theoretical and empirical results indicate that client learn-
ing rate (LR) decay improves convergence on non-IID data [20,
24, 21]. Fixed client learning rates (with ηc = 0.02) were com-
pared with exponentially-decayed client learning rate sched-
ules, in which ηc was reduced by a constant factor, Γη,c, af-
ter every NΓ steps. Hyperparameter scans found that the eval
loss was minimized with an initial learning rate ηc,0 = 0.02,
Γη,c = 0.9, and NΓ = 1000.

Learning rate comparisons are shown in Table 2, for the
FedYogi optimizer. LR decay significantly improves both IID

and non-IID training. The difference is most pronounced for
non-IID training, where the FR decreases from 2.35% to 1.39%
given a fixed FA=0.2%.

Table 2: A comparison of client learning rate schedules.

LR schedule FR (IID) [%] FR (Non-IID) [%]

Constant 2.14 2.35
Exponential 1.73 1.39

5.3. Data Augmentation

Two common speech data augmentation methods—MTR [37]
and SpecAugment [38]—were tuned for non-IID training.

MTR is an acoustic room simulator that generates noise
files which can be applied to spectrogram inputs. Based on a
priori distributions, MTR generates random room sizes and di-
mensions, speaker and noise source positions, signal to noise
ratios, and reverberation times [39]. The technique is effective
for far-field speech recognition and has been used previously
for keyword spotting [10, 8].

In the simulation experiments, MTR was used to create up
to 100 noised replica of each clean utterance from vendor data.
In order to keep a constant number of training examples per
simulated client, MTR configurations were randomly sampled
every time a given simulated client device was used for training.

Unfortunately, MTR is infeasible for on-device training:
users would have to download additional noise data (for additive
noise) and room simulation configurations (for reverberations).
The extra data processing would also lengthen client training
times.

Spectrum augmentation (SpecAugment) is a fast and
lightweight alternative for speech data augmentation. It has
been used previously for keyword spotting [40], and has been
used to achieve state-of-the-art ASR performance [41]. The
augmentation policy broadly consists of three components: (1)
Time Masking, in which consecutive time frames in the spectro-
gram are masked and replaced with Gaussian-distributed noise,
(2) Frequency Masking, in which adjacent bins of the spectro-
gram are zeroed, and (3) Time Warping, in which features are
linearly displaced along the temporal axis.

SpecAugment is an ideal on-device alternative to MTR, as
it requires no config files and minimally increases training time.
Tuning in non-IID data simulations found an optimal configura-
tion of 2 time masks of up to 60 frames along with 2 frequency
masks of up to 15 bins. TimeWarp was not used.

Table 3: FA and FR comparisons for models trained on IID and
non-IID data with different data augmentations.

Data Augmentation Data type FA [%] FR [%]

No augmentation IID 0.17 4.20
No augmentation Non-IID 0.20 3.19
MTR IID 0.13 6.96
MTR Non-IID 0.18 6.15
SpecAugment IID 0.20 1.73
SpecAugment Non-IID 0.19 1.39

Augmentation strategies for IID and non-IID FL are com-
pared in Table 3. SpecAugment reduced the FR with respect to
MTR and no augmentation on both data distributions. Thus, we
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can reduce communication costs and on-device processing time
with SpecAugment while also improving performance.

5.4. Labeling

High-quality labeling can be difficult to obtain on-device, since
peeking at data is impossible by design in FL, and user feed-
back signals are unreliable or infrequent. Given the obstacles
to on-device labeling, teacher student training can be used to
adapt a model trained on the server (with manually labeled data)
to the on-device unlabeled data domain [42, 43, 44]. Models
were trained on both IID and non-IID data with supervised and
teacher-generated labels. For the semi-supervised setting, the
teacher model architecture was identical to the student, but was
trained on additional data in a centralized setting.

Table 4: FR comparisons for on-device labeling strategies.

Labeling FR (IID) [%] FR (Non-IID) [%]

Supervised 1.73 1.39
Teacher 2.12 2.07

Table 4 compares teacher student training with supervised
training. While the FR increases when moving to semi-
supervised labels, it is expected that the matched data available
in true on-device data, coupled with a limited number of sam-
ples labeled with user feedback signals, will close the perfor-
mance gap.

5.5. Central training comparison and ablation studies

The previously-discussed techniques were applied and then re-
moved individually in an ablation study, and the results were
compared with a model trained in the centralized setting on the
exact same vendor dataset using 4× 108 steps of asynchronous
SGD. This provided a direct comparison of centralized training
and FL on IID and non-IID data.

Two additional techniques were explored to fit non-IID
data. Client update clipping, based on ‖wkt+1−wt‖2, was tuned
for non-IID fitting. Multiple client training epochs were also
studied, and have been shown to improve convergence [24].

The following settings were used for the ablation study FL
baseline: data were augmented with SpecAugment, 10 client
epochs were used, the client LR was decayed, client L2 weight
norms were clipped to 20, and the FedYogi optimizer was
used to train with supervised labels.

Ablation results are shown in Figure 2. The metrics favor
non-IID data because the hyperparameters were tuned to min-
imize non-IID eval loss. Had the hyperparameters been tuned
for IID data, the IID FR would be lower than the FR tuned for
non-IID data.

FL achieves comparable FR performance with the
centrally-trained model. In absolute terms, SpecAugment and
multiple client epochs provided the largest contributions to both
IID and non-IID performance. Interestingly, decayed client
learning rates were more important to non-IID training than IID
training. And contrary to prior studies [20], we found that addi-
tional client training epochs benefitted non-IID training.

6. Conclusions
Empirical studies were conducted to train a keyword-spotting
model using FL on non-IID data. Adaptive server optimizers
like FedYogi helped train a model with a lower false reject
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Figure 2: FA and FR for the ablation study, with models trained
on IID and non-IID data compared with centralized training
(dashed line).

rate in fewer training rounds. We also demonstrated the neces-
sity and utility of replacing MTR with SpecAugment for on-
device training. Ablation studies revealed the importance of
multiple client epochs and reduced client clipping. And we pro-
vided strong empirical evidence in favor of client learning rate
decay for training with non-IID data. Finally, we overcome the
visiblity limitations of on-device training by demonstrating that,
in the absence of high-quality on-device labels, teacher-student
training can achieve comparable performance.
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