
Voice Conversion Based Data Augmentation to Improve Children’s Speech

Recognition in Limited Data Scenario

S. Shahnawazuddin†, Nagaraj Adiga‡, Kunal Kumar†, Aayushi Poddar† and Waquar Ahmad∗

†Department of Electronics and Communication Engineering, NIT Patna, India
‡Department of Computer Science, University of Crete, Greece

∗Department of Electronics and Communication Engineering, NIT Calicut, India
s.syed@nitp.ac.in, nagaraj@csd.uoc.gr, waquar@nitc.ac.in

Abstract

Automatic recognition of children’s speech is a challenging re-

search problem due to several reasons. One among those is un-

availability of large amounts of speech data from child speak-

ers to develop automatic speech recognition (ASR) systems em-

ploying deep learning architectures.Using a limited amount of

training data limits the power of the learned system. To over-

come this issue, we have explored means to effectively make

use of adults’ speech data for training an ASR system. For

that purpose, generative adversarial network (GAN) based voice

conversion (VC) is exploited to modify the acoustic attributes

of adults’ speech making it perceptually similar to that of chil-

dren’s speech. The original and converted speech samples from

adult speakers are then pooled together to learn the statistical

model parameters. Significantly improved recognition rate for

children’s speech is noted due to VC-based data augmentation.

To further enhance the recognition rate, a limited amount of

children’s speech data is also pooled into training. Large reduc-

tion in error rate is observed in this case as well. It is worth

mentioning that GAN-based VC does not change the speaking-

rate. To demonstrate the need to deal with speaking-rate differ-

ences we report the results of time-scale modification of chil-

drens speech test data.

Index Terms: Children’s ASR, out-of-domain data augmenta-

tion, voice conversion, generative adversarial network.

1. Introduction

The demand for speech-based smart devices is increasing day

by day. There are many user applications that employ speech-

based interface to take commands [1, 2]. Since such devices

are expected to be used by anyone, the embedded automatic

speech recognition (ASR) system should be highly robust to-

wards speaker-dependent acoustic variations. The speaker-

dependent acoustic attributes vary with age and gender of the

speaker. Collecting representative speech data that capture all

kinds of speaker-dependent acoustic variations is a very chal-

lenging task. When the training data insufficiently represents

the testing scenario, the recognition performance is known to

degrade significantly. Therefore, in such cases, researchers gen-

erally resort to synthetically creating more data by simulation

and augment the original data in order to supply the missing

acoustic attributes. For example, data augmentation based on

vocal tract length perturbation was studied in [3] to robustly

model the variations in acoustic attributes resulting from differ-

ences in the geometry of vocal organs.

Motivated by earlier studies, we have explored out-of-

domain data augmentation in this work to enhance the recogni-

tion performance of children’s ASR system when the domain-

specific data is limited. In this regard, two different cases are

studied. In CASE-I, sufficient amount of children’s speech data

for training an ASR system is assumed to be unavailable. The

reason behind studying this scenario is that, most of the chil-

dren’s speech corpora are expensive and limited in terms of

hours of data available. On the other hand, large amount of

adults’ speech data are freely available (e.g., TED-LIUM [4]

and Librispeech [5]). Furthermore, there are a large number

of low resource languages where the amount of speech data

from adult as well as child speakers is limited. To deal with

unavailability of training data from children, voice-conversion-

based out-of-domain data augmentation is explored wherein the

acoustic attributes adults’ speech are modified using a cycle-

consistent generative adversarial network (GAN) [6]. The GAN

is employed to learn a mapping from adults’ speech to the chil-

dren’s speech. Consequently, the modified adults’ speech sam-

ples become perceptually similar to those of children’s speech

as observed during our listening tests. The modified data is

then merged with the original one from adult speakers. Next,

an ASR system is trained on the augmented data using deep

learning architectures [7]. By pooling modified adults’ speech

into training, the ASR system is able to learn some of the dom-

inant acoustic attributes of children’s speech. Subsequently,

enhanced recognition performances are noted on transcribing

speech data from children. At the same time, there is no signifi-

cant change in the recognition performance when adults’ speech

is transcribed.

In CASE-II of out-of-domain data augmentation studied in

this work, only a limited amount of children’s speech is as-

sumed to be available for training. Using a limited amount of

training data to train an ASR system employing deep learning

architecture limits the power of the learned system. Therefore,

children’s speech is mixed with original and voice converted

adults’ data so that the ASR system may generalize well for

both groups of speakers. On transcribing children’s speech, im-

proved speech recognition accuracy is noted even in this case.

It is worth mentioning here that, voice conversion through cy-

cle GAN does not change the speaking-rate (SR). Differences

in SR between adults’ and children’s speech is an acoustic mis-

match factor that adversely affects the recognition rate. To over-

come this shortcoming, we have employed optimal time scal-

ing of children’s test speech prior to decoding. Further reduc-

tion in error rates are noted due to speaking-rate adaptation of

test data. The experimental evaluations presented is this work

demonstrate the effectiveness of VC-based data augmentation

as well as the combination of speaking-rate adaptation with data

augmentation.

The rest of this paper is organized as follows: In Section 2,

a brief discussion on cycle GAN is presented along with the
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description of the explored data augmentation schemes. In Sec-

tion 3, the experimental evaluations are presented. Finally, the

paper is concluded in Section 4.

2. Voice-conversion-based data
augmentation

Voice conversion (VC) has been applied to various tasks such as

text-to-speech synthesis, speaking assistance, speech enhance-

ment, and pronunciation conversion [6]. VC is basically in-

tended towards modifying non- or para-linguistic information

of speech. At the same time, the linguistic information is pre-

served. In this paper, we have exploited VC for improving chil-

dren’s ASR when the available domain specific data is limited.

For that purpose, VC is applied on adults’ speech to synthet-

ically generate speech data with acoustic attributes similar to

those of child speakers. The synthetically generated data is then

pooled into training in order to improve the recognition perfor-

mance. In the following subsection, a discussion on VC through

cycle consistent GAN is presented. This is followed by the de-

scription of proposed approaches for effectively exploiting VC

for out-of-domain data augmentation in order to improve chil-

dren’s speech recognition.

2.1. Voice conversion through cycle GAN

GANs are popular generative models that were initially used in

image processing. GANs consist of a pair neural networks: the

generator (G) and the discriminator (D). The G network learns

the forward mapping function (GS−>T ) from source (s ∈ S)

to target (t ∈ T ) data. On the other hand, the D network clas-

sifies whether the generated output is real or fake. To learn the

mappings, adversarial loss is used, which is given by:

LAdv(GS−>T , DT ) = Et∼pdata(t)[log(DT (t))]

+Es∼pdata(s)[log(1−D(GS−>T (s)))].
(1)

GANs have been reported to produce impressive results in im-

age processing. Therefore, they have been subsequently applied

to other fields such as speech and video processing. Kaneko et

al. [6] proposed a voice conversion method using cycle consis-

tent GAN (Cycle GAN). In this method, apart from learning

a source to target data forward mapping function, an inverse

mapping function (GT−>S) from target to source data is also

learned. For this purpose, two additional loss functions were

defined, namely, cycle consistency and identity mapping loss,

respectively. The cycle consistency loss is given as:

LCyc(GS−>T , GT−>S) =

Es∼pdata(s)[‖ GT−>S(GS−>T (s))− s ‖1]

+Et∼pdata(t)[‖ GS−>T (GT−>S(t))− t ‖1]

(2)

LCyc provides consistency between the contextual information

of data s and t. Further, to preserve the linguistic information,

additional identity mapping loss is defined as follows:

LId(GS−>T , GT−>S) = Et∼pdata(t)[‖ GS−>T (t)− t ‖1]

+Es∼pdata(s)[‖ GT−>S(s))− s ‖1].
(3)

The overall objective function is written with penalty factors

λCyc and λId:

LFull = LAdv(GS−>T , DT ) + LAdv(GT−>S , DS)+

λCycLCyc(GS−>T , GT−>S) + λIdLId(GS−>T , GT−>S).
(4)
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Figure 1: Proposed schemes for improving children’s ASR ex-

ploiting voice-conversion-based out-of-domain data augmenta-

tion.

Further, strided convolutional neural networks (CNN) are used

to construct both the discriminator and generator networks. Af-

ter each layer, gated linear units (GLUs) activation function is

used as non-linearity [8]. It is reported in literature that Cycle

GAN yields better results with GLUs while training the gener-

ator networks [6]. In this work, Cycle GAN has been used for

voice conversion using the original python code [6] available

online.

2.2. Approaches for out-of-domain data augmentation

Generally, a large amount of speech data is used to learn the

statistical model parameters in order to enhance robustness to-

wards speaker-dependent acoustic variations. However, in the

context of children’s speech, there is a paucity of publicly

available database. Unlike hundreds of hours of speech data

available from adult speakers, most of the publicly available

children’s speech corpora contain only a few tens of hours of

data [9, 10]. At the same time, those are expensive propriety

items. In addition to that, there are a large number of low re-

source languages having limited amount of data from both adult

as well as children. As a result, training a robust ASR system for

children using state-of-the-art approaches is very challenging.

Deep learning architectures that are used in ASR involve huge

number of parameters [7]. Using a limited amount of training

data limits the power of the learned system. Therefore, out-of-

domain data has been employed in earlier works for improving

children’s speech recognition [11, 12, 13, 14].

As mentioned earlier, when the training data does not suffi-

ciently represent the targeted acoustic conditions, synthetically

generated data is augmented with the original one. As a conse-

quence of that, the ASR system is able to robustly learn those

missing targeted acoustic attributes. Similarly, in the absence of

children’s speech or when the available data is limited, one can

resort to out-of-domain data augmentation. The out-of-domain-

data used in this study is from adult speakers. Two different data

augmentation scenarios are explored and those are summarized

in Fig. 1. In CASE-I, it is assumed that only adults’ speech is

available for training the ASR system. However, a very small

amount children’s speech data is available so that a GAN can
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Table 1: Specifications of the speech corpora used in this work.

Corpus WSJCAM0 PF-STAR

Language British English British English

Name of data set AD TR AD TS CH TR CH TS

Purpose Training Testing Training Testing

Speaker group Adult Adult Child Child

No. of speakers 92 20 122 60

Age group > 18 years > 18 years 4-14 years 4-14 years

No. of words 132,778 5,608 46,974 5,067

Duration (hrs.) 15.5 0.6 8.3 1.1

be trained. It is worth mentioning here that, acoustic attributes

of children’s and adults’ speech are starkly different [15, 14].

Therefore, poor speech recognition accuracy is obtained when

children’s speech is transcribed using an adult data trained ASR

system. To overcome this issue, the acoustic attributes of adults’

speech are modified by learning a mapping from adults to chil-

dren domain using a cycle consistent GAN. The original and

voice converted adults’ speech samples are then pooled together

and statistical model parameters are trained. As a consequence

the speech recognition accuracy is improved. In CASE-II, on

the other hand, a limited amount of children’s speech data is

assumed to be available. As mentioned earlier, learning a large

number of network parameters using a limited amount of chil-

dren’s speech data limits the power of the developed ASR sys-

tem. In order to address this shortcoming, both adults’ and

children’s speech data along with the voice converted adults’

data are pooled together before learning the network parame-

ters as shown in Fig. 1. Consequently, the error rates for chil-

dren’s speech recognition decrease significantly. The experi-

mental evaluations presented in paper substantiate these claims.

3. Experimental evaluation

In this section, experimental evaluations demonstrating the ef-

fectiveness of VC-based data augmentation are presented.

3.1. Experimental setup and baseline performances

For the experimental evaluations presented in this paper, Kaldi

toolkit [16] was used. Two different British English cor-

pora were employed for experimental evaluations. The chosen

databases are very similar in terms of accent of speakers and

recording conditions. More details of the two corpora and the

training and test sets derived from them are given in Table 1.

Wide-band speech sampled at 16kHz rate has been employed

for system development and evaluation in this study.

For front-end speech analysis, overlapping Hamming win-

dows of length 20 ms and frame-rate of 100 Hz were employed.

For MFCC feature extraction, a 40-channel Mel-filterbank was

used for spectral warping before extracting 13-dimensional base

MFFC features. The base features were time-spliced using a

context size of ± 4. This was followed by dimensionality re-

duction and de-correlation using linear discriminant analysis

and maximum likelihood linear transformation to derive 40-

dimensional feature vectors. Cepstral mean and variance nor-

malization was applied to all the features. Robustness towards

speaker-dependent variations was further enhanced through

feature-space maximum-likelihood linear-regression (fMLLR).

Three-states hidden Markov models (HMM) were used for

statistically modeling context-dependent cross-word triphones

with the maximum number of senones being fixed at 2000. The

Table 2: Baseline WERs for AD TS and CH TS with respect to

TDNN systems trained using either CH TR or AD TR or a mix

of both CH TR and AD TR.

Data used WER (in %)

for training CH TS AD TS

CH TR 9.40 32.14

AD TR 19.26 5.63

AD TR + CH TR 7.41 5.53

observation densities for the HMM states were then generated

using time-delay neural networks (TDNN) [17, 18]. The ini-

tial effective learning-rate was chosen as 0.015 while the fi-

nal effective learning-rate was 0.002. The TDNN architec-

ture consisted of 5 hidden layers with splicing indices being

“0”, “−2,−2”, “0”, “−4,−4” and “0”. The ReLU dimen-

sion was chosen as 250. Prior to learning the TDNN parame-

ters, the fMMLR-normalized feature vectors were spliced again

considering a context size of ± 4. Minibatch size of 512 was

used. While decoding CH TS, a domain-specific 1.5k bi-gram

language model (LM) was employed. The out-of-vocabulary

(OOV) rate and perplexity of the employed LM with respect to

CH TS were 1.20% and 95.8, respectively. Further, a lexicon

consisting of 1, 969 words including the pronunciation varia-

tions was employed. For decoding AD TS, the standard MIT-

Lincoln 5k Wall Street Journal bi-gram LM was used. The lex-

icon employed in this case consisted of 5, 850 words including

the pronunciation variations. For evaluating the recognition per-

formances, the word error rate (WER) metric is used.

Initially, three different ASR systems were trained using

CH TR, AD TR and a mix of both, respectively. The WERs for

the two test sets with respect to those ASR systems are given

in Table 2. Due of aforementioned problems of data scarcity

and acoustic mismatch, the WER for AD TS is extremely poor

when only children’s speech is used for system development.

On the other hand, when AD TR set is used for training, WER

for CH TS is still comparatively degraded. On pooling AD TR

and CH TR, the WERs are reasonably good for both the test

sets. These results show that out-of-domain-data augmentation

significantly improves children’s ASR.

3.2. Evaluating CASE-I of VC-based data augmentation

To implement CASE-I of data augmentation, the acoustic at-

tributes of AD TR were modified using Cycle GAN in order

to render the speech samples perceptually similar to those of

children’s speech. For learning the model parameters of the Cy-

cle GAN, 10 minutes of data from each group was used. A

mapping from adult to child domain as well as from child to

adult domain was learned. The number of epochs employed in

training the GAN parameters was equal to 5000. The modified

adult data training set is referred to as AD TR-VC in this work.

Next the TDNN network parameters were trained after pooling

AD TR and AD TR-VC. The effect of pooling the two training

sets is demonstrated by the WERs enlisted in Table 3. On com-

paring the baseline WER for CH TS with that obtained using

voice conversion, a relative reduction of 31.4% is noted. At the

same time, there is no degradation in the WER for AD TS.
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Table 3: WERs for AD TS and CH TS demonstrating the effect

of CASE-I of VC-based out-of-domain data augmentation.

Data used WER in (%)

for training AD TS CH TS

AD TR 5.63 19.26

AD TR + AD TR-VC 5.63 13.22

Percentage relative reduction 0 31.4

Table 4: WERs for AD TS and CH TS comparing VTLP-

and SP-based data augmentation with CASE-I of proposed ap-

proach.

Technique WER in (%)

employed AD TS CH TS

Baseline 5.63 19.26

VTLP 5.66 15.17

SP 5.39 18.47

VC 5.63 13.22

3.2.1. Comparison with VTLP and speed perturbation

Vocal tract length perturbation (VTLP) [3, 19] and speed per-

turbation (SP) [20] are two of the dominant approaches for data

augmentation reported in literature. In order to further substan-

tiate the effectiveness of the proposed approach, it was com-

pared with VTLP and SP. In this study, we have used the the

same warping factors for all the utterances in AD TR. It is well

known that, the formant frequencies are higher in the case of

children’s speech. Hence, warping factor was varied from 1.1
to 1.14 in steps of .01 to create 3-fold training set. The best case

performance was obtained when the 3-fold training set was ob-

tained by using warping factors 1.12 and 1.14. In the case of

SP, two copies of AD TR were derived by modifying the speed

by a factor of 0.9 and 1.1 of the original rate leading to the

creation of 3-fold training set. To implement SP, the default

pipeline in Kaldi was used. The WERs for those experiments

are summarized in Table 4. On comparing the WERs obtained

through VTLP- and SP-based data augmentation, the proposed

approach is noted to be better for children’s speech test set.

3.2.2. Speaking-rate adaptation

Even though voice-converted adults’ speech utterances sound

very similar to children’s speech, the speaking-rate remains un-

changed. Earlier works on children’s speech have noted that

the speaking-rate for children is much slower than that for the

adults’ [15]. This mismatch in speaking-rate leads to degraded

speech recognition accuracy. To overcome this shortcoming, we

resorted to explicit time-scale modification (TSM) of children’s

speech test set. In this work, we have employed a recently pro-

posed TSM approach based on fuzzy classification of spectral

bins [21]. For each of the test utterances, the optimal scal-

ing factor was selected using a two-pass maximum likelihood

grid search. The modified test data was then decoded using

the trained acoustic models. The WER obtained by perform-

ing speaking-rate adaptation of the test data is given in Table 5.

As evident from the tabulated WERs, a relative improvement of

Table 5: WERs for CH TS demonstrating the effect of time scal-

ing (TS) of test utterances in CASE-I of data augmentation.

Technique employed WER in (%)

VC 13.22

VC + TS 10.43

Percentage relative reduction 21.1

Table 6: WERs for AD TS and CH TS demonstrating the effect

of CASE-II of VC-based out-of-domain data augmentation.

Data used WER in (%)

for training AD TS CH TS

AD TR + CH TR 5.53 7.41

AD TR + CH TR + AD TR-VC 5.14 6.49

Percentage relative reduction 7.1 12.5

Table 7: WERs for CH TS demonstrating the effect of combin-

ing time scaling (TS) with CASE-II of VC-based data augmen-

tation.

Technique employed WER in (%)

VC 6.49

VC + TS 5.99

Percentage relative reduction 7.7

21.1% is obtained by combining VC-based data augmentation

with time-scaling of the test utterances.

3.3. Evaluating CASE-II of VC-based data augmentation

In CASE-II of VC-based out-of-domain data augmentation, as

illustrated by Fig. 1, AD TR, CH TR and AD TR-VC datasets

were pooled together and TDNN-based acoustic models were

trained. On pooling the three training sets, the WERs are ob-

served to decrease significantly not only of CH TS test set but

also for AD TS set as evident from Table 6. Further reduction in

WER for CH TS is noted on combining proposed CASE-II of

VC-based out-of-domain data augmentation with time-scaling

of the test utterances. The WER for that study is enlisted in

Table 7.

4. Conclusion

Voice-conversion-based out-of-domain data augmentation has

been explored in this study in order to improve children’s

speech recognition when the available domain-specific data is

limited. For that purpose, the acoustic attributes of adults’

speech samples are modified using cycle consistent GAN so

that they become perceptually similar to children’s speech. Sig-

nificantly reduced WERs are obtained by VC-based out-of-

domain data augmentation. Since cycle-GAN-based voice con-

version does not affect the speaking-rate, the acoustic mis-

match induced by differences in speaking-rate is overcome by

explicit time-scaling of the children’s speech test set. Added

improvements are noted by combining data augmentation with

speaking-rate adaptation of test data.
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[21] E.-P. Damskägg and V. Välimäki, “Audio time stretching using
fuzzy classification of spectral bins,” Applied Sciences, vol. 7,
no. 12, 2017.

4386


