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Abstract

We propose a new training method to improve HMM-based
keyword spotting. The loss function is based on a score com-
puted with the keyword/filler model from the entire input se-
quence. It is equivalent to max/attention pooling but is based on
prior acoustic knowledge. We also employ a multi-task learning
setup by predicting both LVCSR and keyword posteriors. We
compare our model to a baseline trained on frame-wise cross en-
tropy, with and without per-class weighting. We employ a low-
footprint TDNN for acoustic modeling. The proposed training
yields significant and consistent improvement over the baseline
in adverse noise conditions. The FRR on cafeteria noise is re-
duced from 13.07% to 5.28% at 9 dB SNR and from 37.44%
to 6.78% at 5 dB SNR. We obtain these results with only 600
unique training keyword samples. The training method is inde-
pendent of the frontend and acoustic model topology.

Index Terms: keyword spotting, machine learning, speech
recognition

1. Introduction

The problem of keyword spotting (KWS) refers to detecting
words of interest in an audio stream and has been an active
research field during the last years. The typical use case is to
trigger the digital assistant on a certain wake word. KWS usu-
ally runs locally on mobile (embedded) device, so power is a
key factor [1]. This implies the need to minimize the compute
and memory footprint [2], as well as to keep the false detection
rate at a very low level in order to prevent unintended wakes [3].

In a typical system deep neural network acoustic models are
discriminatively trained to recognize phonetic units which are
known from Large Vocabulary Continuous Speech Recognition
(LVCSR) [4, 5]. During decoding, frame-wise posterior scores
between keyword and rejection models are combined into a fi-
nal score. Keywords are represented by a sequence of phonetic
units (Hidden Markov Model - HMM), while non-keywords are
modelled by a filler or rejection model [6]. This architecture is
referred to as DNN-HMM baseline.

Many network architectures have been tried for KWS,
including affine [4], convolutional (CNN) [3, 7], time-delay
(TDNN) [1] or recurrent [8, 9]. They are usually trained
at frame level with cross entropy or at segment level, e.g.
with Connectionist Temporal Classification (CTC) or Recurrent
Neural Network Transducer (RNN-T)[10]. Some works employ
per-class weighting of cross entropy to emphasize the posteriors
utilized by the keyword/filler model [5, 11]. In order to solve
the class imbalance problem, methods to mine regional hard ex-
amples and downsample the negative frames are introduced by
Hou et al. [12] while Liu et al. employ focal loss [13].

Latest research on KWS features methods such as attention
pooling [14] or max pooling [8]. The DNN directly models the
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probability that the keyword is spotted in the input window. In
case of max pooling, the pooled score is a maximum of frame-
wise scores and in case of attention pooling it is a linear combi-
nation of individual scores with weights inferred by a trainable
attention module [15]. There are also works which feature end-
to-end encoder-decoder with max-pooling loss [16, 17].

Another approach that has shown significant improvements
for KWS is multi-task learning [18]. In [11] the DNN acous-
tic model is trained on a task of predicting the keyword-
specific phone states, and an auxiliary task of predicting LVCSR
senones. Sigtia et al. compare the use of LVCSR vs. keyword-
specific loss in multi-task learning and show a benefit for the lat-
ter [9] while Gao et al. use a multi-condition, multi-task training
approach that shows robustness with less training data [19].

In our work we try to combine the pooling and multi-task
methodology. We use both LVCSR targets and keyword targets,
but the main novelty is that keyword loss is computed based on
the score inferred with the keyword/filler model. This is a new
pooling method, which we call state sequence pooling.

Compared to the DNN-HMM baseline, state sequence
pooling training has the following advantages:

1. It minimizes the errors in keyword detections, rather than

in classifying phonetic units.

2. It emphasizes the DNN outputs used by the keyword
model better than existing methods, such as per-class
weighting.

3. Thanks to including a threshold in loss calculation (as
outlined in Sec. 2.4) it pushes scores of positive and neg-
ative examples further apart than in baseline training.

Like max/attention pooling, our method directly models the
probability of spotting the keyword in the input window. There
are two major advantages of the proposed approach over known
pooling methods. Firstly, state sequence pooling is based on
prior phonetic knowledge, which is beneficial especially when
there are few training keyword samples available. Secondly,
max-pooling and attention models are typically based on recur-
rent topologies, which model long temporal context, spanning
the whole keyword. Our method can successfully be used with
a feed-forward network, which is known to be easier to train
[20] or to scale down when memory is a limitation.

These advantages enable us to greatly improve the scores
of the most challenging examples. We achieve a significant in-
crease in noise robustness, which is confirmed in experiments.

2. Keyword detection algorithm

The main diagram of our algorithm is presented in Fig. 1. In the
state-of-the-art training frame-wise cross entropy loss is com-
puted by comparing acoustic model outputs with frame-level
targets produced by forced alignment. We propose a new loss
function which combines the frame-wise cross entropy with a
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Figure 1: Acoustic model training method (grey and blue blocks are state of the art, green blocks are introduced in this work)

loss computed from a sequence of observations by decoding the
keyword/filler model. The loss is based on the keyword score,
so the acoustic model is optimized directly for the KWS task,
which is an improvement over the baseline system. The setup
takes advantage of multiple instance learning which is known
to be beneficial for signal classification [21]. It also employs
multi-task learning since it combines LVCSR and keyword loss.

A practical keyword detection system typically has two
stages, where the 1st pass model works with limited resources
and the 2nd pass model verifies the detection from 1st pass, with
more resources available [6]. Our experiments involve a model
with a low number of parameters, so it is suitable for 1st pass or
for a standalone embedded detector.

2.1. Acoustic model

The acoustic model is a time-delay neural network (TDNN).
Such network structure has been widely adopted for KWS due
to its good tradeoff between the number of parameters and the
temporal context modeled [1, 22, 23]. The topology is listed in
Tab. 1. The input of the acoustic model are 40 log-filterbank
features extracted from 25 ms overlapping frames with 10 ms
shift. The network is prepended with a transform layer which
stacks the input features and standarizes them by subtracting
the mean and dividing by standard deviation. We use 3 TDNN
layers with 176 units and bottleneck layers in between, all with
rectified linear unit (ReLU) activation and batch normalization.
The TDNN layers connect to past or future activations from pre-
vious layers, e.g. -1,0,1 means connection to 1 past, current and
1 future frame. The final layer has 3897 outputs for all poste-
riors which are produced during forced alignment and used as
frame-level targets. Only 86 of these posteriors are used in the
keyword/filler model (36 for keyword, 50 for rejection). After
training the remaining outputs can be discarded, thus signifi-
cantly reducing the memory footprint.

2.2. Keyword model

We use a simplified HMM decoding algorithm which is dif-
ferentiable and can be used as a loss function. The key-
word/rejection model is presented in Fig. 2. It comprises a se-
quence of states which are related to posterior probabilities of
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Figure 2: State sequence model. Sy (red) is the rejection state.
States S1 to SN (green) are keyword states.

phonetic units (triphone states) which constitute the phrase. The
phrase used in experiments is Hello computer. It comprises 12
triphones, which yields N = 36 states (3 per triphone).

For each time step ¢ the acoustic model estimates a vector
of framewise posteriors [p1, p2, ps, ...]. Let us assume that the
posteriors are ordered in such a way, that first one relates to S1,
second to Sz etc. The first state Sy is a rejection state. It is
updated based on a set R of 50 rejection posteriors chosen with
a heuristics based on a priori phonetic knowledge and triphone
statistics of the English language.

S0(0) =0
So(t) = So(t — 1) + max(pm(t)) M

This simple approach to filler modeling ensures satisfactory
performance but we find it potentially beneficial to learn the
rejection posteriors data-driven within this training framework.
This remains a topic for further research.

Forn = 1..N the state scores are updated in each time step:

Sn(t) = max{Sn—1(t = 1) +pa(t), Sn(t — 1) + pu(t)}
@)
The final score of the sequence of frames is the maximum
of the final state score minus the rejection state score across all
time steps.

{ Sn(0) = —c0

(Sn(t) = So(t)) 3)

Stinal = max
te{0,1,...,T—1}
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Table 1: Topology of the acoustic model

layer input nodes | parameters
shift 5%40 (-2,-1,0,1,2) 200 200
scale 200 200 200
bottleneck 200 64 12 864
TDNN 3*%64 (-1,0,1) 176 33968
bottleneck 176 64 11328
TDNN 3%64 (-1,0,1) 176 33968
bottleneck 176 64 11328
TDNN 3*64 (-1,0,1) 176 33968
affine 176 176 31152
output 176 86 15222
Total parameters (including batchnorm) 185118

2.3. Baseline training

The training is composed of two steps. First, we pretrain the
network for 50 iterations on a LVCSR training set without key-
words to model the English phonetics properly. Next, we fine-
tune for 20 more iterations on a training set including the key-
words to adapt the basic system to the keywords of interest.

The baseline model is trained with frame-wise cross en-
tropy loss as in Fig. 1. For comparison, we also train two models
based on weighted cross entropy, as in [5, 11]. While computing
frame-wise cross entropy we apply the weight w to the posteri-
ors not used in the keyword/rejection model, and the weight 1 to
the posteriors used in the model. We try two values of w: 0.25
and 0.5. We train our models in PyTorch with Adam optimizer
and a learning rate of 0.0001.

2.4. State sequence pooling training

The final score defined in Eq. 3 is computed for each training
example in the minibatch. The decision d is a vector whose
elements relate to keywords and non-keywords (rejection):

d= Srej _ _Sfinal - (1 - y) . Sth
Sk’ey

Sfinal — Y+ Sth

where y is the sequence-level label of the training example
(which equals 0 for non-keywords and 1 for keywords) and Sy,
is the score threshold. Introducing the threshold term to Eq. 4
helps to shape the distribution of final keyword scores to make
them more separable. In experiments we consider two values of
Stn: 10 and 50. For example, Sy, = 50 implies that the pos-
itive examples should have a score Sfinq; higher than 50 and
negative examples: lower than -50.

The decision d is then passed through softmax and com-
pared to the label y by a cross-entropy criterion, thus obtaining
a sequence-level loss L. The final loss is a linear combination
of the sequence-level loss with the frame-wise loss L ; averaged
across all frames in the sequence.

“

>

te{1,...,T}

L:wS-LS—i—wf-% Lf(t) (®)]
where w; and w; are the weights applied to sequence-level and
frame-level loss respectively. The usage of frame-level loss en-
ables regularization and prevents overfitting, similar as done by
Povey et al. [24]. We find it best to weigh the loss components
equally (ws = wy = 0.5).

The state sequence pooling model is trained with exactly
the same data, number of epochs and hyperparameters as the
baseline model.
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3. Acoustic data
3.1. Training set

The training set is composed of two parts: large-vocabulary
US English corpus and a keyword corpus. The English cor-
pus cotains over 2 million utterances with a combined length
of 3khours, including Librispeech [25] and Speecon [26]
databases. We augment it with 400 hours of speech with ad-
ditional noise and another 400 hours with reverb + noise, so
that in total we use 3.8k hours of non-keyword data.

The keyword corpus comprises 600 unique recordings of
Hello computer. After augmentation with heavy noise and re-
verberation, 20k utterances and 80 hours of keyword data is
available. We employ stratified sampling to maintain a 5:1 ratio
of non-keyword vs. keyword examples in the minibatches, thus
reducing the class imbalance problem.

3.2. Evaluation set

For evaluation we use 399 utterances of Hello computer. The
test examples come from a different source and are uttered by
different speakers that the ones present in the training set. Thus,
we make sure that we properly test against overfitting. The eval-
uation is focused on additive noise as it is known from practice
to be the most harmful factor. We mix the keyword record-
ings with the following noise types: cafeteria, music, fan and
side speech. The noises used for evaluation are different sig-
nals than the ones employed for augmenting the training set.
We also simulate reverberation by applying room impulse re-
sponses (RIR) simulated at 1 meter (near field) and 5 meters
(far field). For non-keywords we use snippets from US English
openly available podcasts. We extract 17280 random 5-second
snippets which totals to 24 hours.

4. Experiments

We evaluate our models based on false rejection rate (FRR) and
false accept rate (FAR). In Tab. 2 we compare the FRRs of dif-
ferent models for an equal number of false wakes, i.e. once in 8
hours. All models perform well on clean and room impulse re-
sponse (RIR) data, without significant differences. The baseline
has some deficits for noise, especially cafeteria and side speech.
Weighted cross entropy helps but reducing the weight of poste-
riors not present in the keyword/filler model to 0.25 does not
yield as good results as 0.5, which is surprising since Raju et
al. used w = 0.1 [5]. State sequence pooling models reduce
the FRR in noises by 75 % for music, by 73 % for side speech
noises, and even for very difficult cafeteria 1 dB SNR - by 70 %.
The score threshold S;;, = 10 seems to work better for most
cases than S;;, = 50 but the differences are mostly insignificant
atp < 0.05.

The plot in Fig. 3 shows the distribution of scores of key-
words and non-keywords from the training set for the three
models. The pretrained model yields a high separation for utter-
ances which are clean or mixed with low levels of noise whereas
difficult examples achieve low scores and result in overlapping
score distributions between keywords and non-keywords. The
baseline training improves the distribution by noticeably im-
proving scores of positive examples, but still many noisy key-
words yield very low scores. After training with state sequence
pooling the separation is much better, precisely because the op-
timizer focuses on improving scores of difficult examples, i.e.
samples mixed with high-level noise. In state sequence pooling
training the score threshold value Sy, is equal to 50.



Table 2: False rejection rate (FRR [%]) at an operating point of 1 false detection in 8 hours

condition Clean RIR cafeteria music | fan | side speech

SNR / distance Im | Sm | 9dB | 5dB | 1dB 9dB | 9dB 9dB

baseline 1.51 1.01 0.5 19.1 4397 | 96.48 | 11.31 6.28 28.64

weighted cross entropy w = 0.25 1.76 | 075 | 0.75 | 15.83 | 42.21 | 9548 | 12.31 | 4.77 24.87

weighted cross entropy w = 0.5 1.51 0.75 | 1.01 | 13.07 | 37.44 | 93.97 | 10.05 | 3.27 25.38

state sequence pooling Stp, = 10 0.5 0.75 | 0.5 5.28 6.78 | 3392 | 231 3.02 7.54

state sequence pooling Stp, = 50 1.76 1.76 | 2.01 | 5.28 7.04 | 28.64 | 3.52 3.52 7.79

pretrained model baseline state sequence pooling
non-keywords non-keywords non-keywords
—— keywords —— keywords —— keywords
mean: -99.28
: mean: 149.62 mean: 414.73
-500 -3b0 -150 -5‘0 6 5‘0 160 360 560 10‘00 -500 -3b0 -1‘00-5‘0 6 5‘0 1(‘)0I 360 560 1600 -500 -360 -160 -5‘0 6 Sb 160 360 ’ 560 10‘00

score

score

score

Figure 3: Distribution of keyword and non-keyword scores after different training strategies

Finally, in Fig. 4 we observe the detection error tradeoff
for selected noise types (music 9 dB SNR and cafeteria 9 dB
SNR). The state sequence pooling model (here with Sy, = 10)
outperforms baseline and weighted cross-entropy models by a
wide margin. It enables working with a high enough threshold
to only produce 1 false detection in 24 hours of continuous lis-
tening, while maintaining very high accuracy for true phrases.

30
— baseline - music 9 dB SNR
T - - baseline - cafeteria 9 dB SNR
25 i | — weighted cross entropy - music 9 dB SNR

cafeteria 9 dB SNR|
music 9 dB SNR
cafeteria 9 dB SNR

weighted cross entropy -
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Figure 4: Detection results in noise

5. Conclusions

The evaluation proves that the proposed training method helps
to improve KWS performance in noisy conditions. We show
that the scores of noisy examples are greatly improved during
training which translates to superior performance on the evalu-
ation set as well. It is worth noting that we only use 600 unique
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training samples of the keyword, which are additionally aug-
mented with noise and reverberation. Successful training with
a limited set of keyword examples is one of the advantages of
our method and it is thanks to using the phonetic units (senones)
learnt in the LVCSR task.

In a very recent work, which was not published yet when
our research started, Sigtia et al. arrived at similar conclusions
[9]. We also find it that learning both LVCSR targets and key-
word targets is greatly beneficial. What makes our work differ-
ent is that Sigtia et al. used a BLSTM classifier trained with
CTC. Such a topology is quite efficient but can only be used for
2-nd pass verification in a two-pass algorithm. Our work uses a
TDNN model which can work in a 1-st pass as well. More-
over, we reuse neural network outptus across tasks, whereas
Sigtia et al. reuse hidden layer parameters. We find it bene-
ficial that the acoustic model retains the knowledge of phonetic
units (senones) learnt in the LVCSR task. Finally, training with
CTC requires substantially more keyword data.

There are known methods to improve KWS accuracy in
noise by applying preprocessing or multichannel modeling
[27, 28, 29]. We present the results on one channel without
preprocessing to emphasize the improvement coming from the
training setup. Still, the proposed algorithm is independent of
the frontend and could be used to boost the performance of both
multi-channel and one-channel systems.

The requirement of running forced alignment prior to train-
ing can be regarded as a disadvantage of our method. Even
though in the presented experiments forced alignments are per-
formed on all data, including the keyword, we believe that we
could only do them for a fraction of the training set without
detriment to accuracy. For those examples which do not have
alignments, only state sequence loss would be backpropagated.
Ideally, alignments would only be produced once for the never-
changing core subset (i.e. English ASR corpora) and the ad-
ditional data (i.e. task-specific keyword data) would only have
sequence-level labels. This is a topic for further experiments.
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