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Abstract
While deep learning models have made significant advances
in supervised classification problems, the application of these
models for out-of-set verification tasks like speaker recognition
has been limited to deriving feature embeddings. The state-of-
the-art x-vector PLDA based speaker verification systems use
a generative model based on probabilistic linear discriminant
analysis (PLDA) for computing the verification score. Recently,
we had proposed a neural network approach for backend mod-
eling in speaker verification called the neural PLDA (NPLDA)
where the likelihood ratio score of the generative PLDA model
is posed as a discriminative similarity function and the learnable
parameters of the score function are optimized using a verifica-
tion cost. In this paper, we extend this work to achieve joint
optimization of the embedding neural network (x-vector net-
work) with the NPLDA network in an end-to-end (E2E) fash-
ion. This proposed end-to-end model is optimized directly from
the acoustic features with a verification cost function and dur-
ing testing, the model directly outputs the likelihood ratio score.
With various experiments using the NIST speaker recognition
evaluation (SRE) 2018 and 2019 datasets, we show that the
proposed E2E model improves significantly over the x-vector
PLDA baseline speaker verification system.
Index Terms: NPLDA, End-to-End Systems, Speaker Verifica-
tion

1. Introduction
Automatic speaker verification (ASV) has several applications
such as voice biometrics for commercial applications, speaker
detection in surveillance, speaker diarization, etc. A speaker
is enrolled by a sample utterance(s), and the task of ASV is
to detect whether the target speaker is present in a given test
utterance or not. Several challenges have been organized over
the years for benchmarking and advancing speaker verification
technology such as the NIST speaker recognition Evaluation
(SRE) challenge 2019 [1], the VoxCeleb speaker recognition
challenge (VoxSRC) [2] and the VOiCES challenge [3]. The
major challenges in speaker verification include the language
mismatch in testing, short duration audio and the presence of
noise/reverberation in the speech data.

The state-of-the-art systems in speaker verification use a
model to extract embeddings of fixed dimension from utter-
ances of variable duration. The earlier approaches based on
unsupervised Gaussian mixture model (GMM) i-vector extrac-
tor [4] have been recently replaced with neural embedding ex-
tractors [5, 6] which are trained on large amounts of super-
vised speaker classification tasks. These fixed dimensional
embeddings are pre-processed with a length normalization [7]
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technique followed by probabilistic linear discriminant analysis
(PLDA) based backend modeling approach [8].

In our previous work, we had explored a discriminative neu-
ral PLDA (NPLDA) approach [9] to backend modeling where
a discriminative similarity function was used. The learnable
parameters of the NPLDA model were optimized using an ap-
proximation of the minimum detection cost function (DCF).
This model also showed good improvements in our SRE eval-
uations and the VOiCES from a distance challenge [10, 11].
In this paper, we extend this work to propose a joint modeling
framework that optimizes both the front-end x-vector embed-
ding model and the backend NPLDA model in a single end-
to-end (E2E) neural framework. The proposed model is ini-
tialized with the pre-trained x-vector time delay neural network
(TDNN). The NPLDA E2E is fully trained on pairs of speech
utterances starting directly from the mel-frequency cepstral co-
efficient (MFCC) features. The advantage of this method is that
both the embedding extractor as well as the final score computa-
tion is optimized on pairs of utterances and with the speaker ver-
ification metric. With experiments on the NIST SRE 2018 and
2019 datasets, we show that the proposed NLPDA E2E model
improves significantly over the baseline system using x-vectors
and generative PLDA modeling.

2. Related Prior Work
The common approaches for scoring in speaker verification sys-
tems include support vector machines (SVMs) [12], and the
probabilistic linear discriminant analysis (PLDA) [8]. Some
efforts on pairwise generative and discriminative modeling are
discussed in [13, 14, 15]. The discriminative version of PLDA
with logistic regression and support vector machine (SVM) ker-
nels has also been explored in [16]. In this work, the authors
use the functional form of the generative model and pool all the
parameters needed to be trained into a single long vector. These
parameters are then discriminatively trained using the SVM loss
function with pairs of input vectors. The discriminative PLDA
(DPLDA) is however prone to over-fitting on the training speak-
ers and leads to degradation on unseen speakers in SRE evalu-
ations [17]. The regularization of embedding extractor network
using a Gaussian backend scoring has been investigated in [18].
Other recent developments in this direction includes efforts in
using the approximate DCF metric for text dependent speaker
verification [19].

Recently, some end-to-end approaches for speaker verifica-
tion have been examined. For example, in [20], the PLDA scor-
ing which is done with the i-vector extraction has been jointly
derived using a deep neural network architecture and the en-
tire model is trained using a binary cross entropy training crite-
rion. In [21], a generalized end to end loss by minimizing the
centroid means of within speaker distances while maximizing
across speaker distances was proposed. In another E2E effort,
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Figure 1: End-to-End x-vector NPLDA architecture for Speaker Verification.

the use of triplet loss has been explored [22]. However, in spite
of these efforts, most state of the art systems use a generative
PLDA backend model with x-vectors and similar neural net-
work embeddings.

3. Background
3.1. Generative Gaussian PLDA (GPLDA)

The PLDA model on the processed x-vector embedding ηr (af-
ter centering, LDA transformation and unit length normaliza-
tion) is given by

ηr = Φω + εr (1)

where ω is the latent speaker factor with a Gaussian prior of
N (0, I), Φ characterizes the speaker sub-space matrix, and εr is
the residual assumed to have distributionN (0,Σ). For scoring,
a pair of embeddings, ηe from the enrollment recording and
ηt from the test recording are used with the PLDA model to
compute the log-likelihood ratio score given by

s(ηe,ηt) = η
ᵀ

eQηe + η
ᵀ

t Qηt + 2η
ᵀ

ePηt + const (2)

where,

Q = Σ−1
tot − (Σtot −ΣacΣ

−1
totΣac)

−1 (3)
P = Σ−1

totΣac(Σtot −ΣacΣ
−1
totΣac)

−1 (4)

with Σtot = ΦΦT + Σ and Σac = ΦΦT .
In the kaldi implementation of PLDA, a diagonalizing

transformation which simultaneously diagonalizes the within
and between speaker covariances is computed which reduces
P andQ to diagonal matrices.

3.2. NPLDA

In the discriminative NPLDA approach [11], we construct the
pre-processing steps of LDA as first affine layer, unit-length
normalization as a non-linear activation and PLDA centering
and diagonalization as another affine transformation. The fi-
nal PLDA pair-wise scoring given in Eq. 2 is implemented as
a quadratic layer in Fig. 1. Thus, the NPLDA implements the
pre-processing of the x-vectors and the PLDA scoring as a neu-
ral backend.

3.2.1. Cost Function

To train the NPLDA for the task of speaker verification, we sam-
ple pairs of x-vectors representing target (from same speaker)
and non-target hypothesis (from different speakers). The nor-
malized detection cost function (DCF) [23] for a detection
threshold θ is defined as:

CNorm(β, θ) = PMiss(θ) + βPFA(θ) (5)

where β is an application based weight defined as

β =
CFA(1− Ptarget)
CMissPtarget

(6)

where CMiss and CFA are the costs assigned to miss and false
alarms, and Ptarget is the prior probability of a target trial.
PMiss and PFA are the probability of miss and false alarms re-
spectively, and are computed by applying a detection threshold
of θ to the log-likelihood ratios. A differentiable approximation
of the normalized detection cost was proposed in [11, 19].

P (soft)
Miss(θ) =

∑N
i=1 ti [1− σ(α(si − θ))]∑N

i=1 ti
(7)

P (soft)
FA (θ) =

∑N
i=1(1− ti)σ(α(si − θ))∑N

i=1(1− ti)
(8)
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Here, i is the trial index, si is the system score and ti denotes
the ground truth label for trial i, and σ denotes the sigmoid func-
tion. N is the total number of trials in the minibatch over which
the cost is computed. By choosing a large enough value for
the warping factor α, the approximation can be made arbitrarily
close to the actual detection cost function for a wide range of
thresholds. The minimum detection cost (minDCF) is achieved
at a threshold where the DCF is minimized.

minDCF = min
θ

CNorm(β, θ) (9)

The threshold θ is included in the set of learnable parameters
of the neural network. This way, the network learns to mini-
mize the minDCF as a function of all the parameters through
backpropagation.

4. End-to-end modeling
The model we explore is a concatenated version of two param-
eter tied x-vector extractors (TDNN networks [24]) with the
NPLDA model (Fig. 1). 1 The end-to-end model processes the
mel frequency cepstral coefficients (MFCCs) of a pair of utter-
ances to output a score. The MFCC features are passed through
nine time delay neural network (TDNN) layers followed by a
statistic pooing layer. The statistics pooling layer is followed
by a fully connected layer with unit length normalization non-
linearity. This is followed by a linear layer and a quadratic layer
as a function of the enrollment and test embeddings to output a
score. The parameters of the TDNN and the affine layers of the
enrollment and test side of the E2E model are tied, which makes
the model symmetric.

4.1. GPU memory considerations

We can estimate the memory required for a single iteration
(batch update) of training as the sum of memory required to
store the network parameters, gradients, forward and backward
components of each batch. In this end-to-end network, each
training batch of N trials can have upto 2N unique utterances
assuming there are no repetitions. For simplicity, let us assume
each of the utterances corresponds to T frames. We denote ki
to be the dimension of the input to the ith TDNN layer, with
a TDNN context of ci frames. The total memory required can
then be estimated as 2NT

∑
i kici×16 bytes.. The GPU mem-

ory is limited by the total number of frames that go into the
TDNN, which is denoted by the factor 2NT . A large batchsize
of 2048, as was used in [10], is infeasible for the end-to-end
model (results in GPU memory load of 240GB). Hence, we re-
sorted to a sampling strategy to reduce the GPU memory con-
straints.

4.2. Sampling of Trials

In this current work, in order to avoid memory explosion in the
x-vector extraction stage of the E2E model, we propose to use a
small number of utterances (64) in a batch with about 20 sec. of
audio in each utterance. These 64 utterances are drawn from m
speakers where m ranges from 3 − 8. These 64 utterances are
split randomly into two halves for each speaker to form enroll-
ment and test side of trials. The MFCC features of the enroll-
ment and test utterances are transformed to utterance embed-
dings ηe and ηt (as shown in Fig. 1). Each pair of enrollment,
and test utterances is given a label as to whether the trial belongs

1The implementation of this model can be found in https://
github.com/iiscleap/E2E-NPLDA

to the target class (same speaker) or non-target class (different
speakers). In this way, while the number of utterances is small,
the number of trials used in the batch is 1024. Using the label
information and the cost function defined in Eq. 5, the gradients
are back-propagated to update the entire E2E model parameters.

This algorithm is applied separately to the male and female
partitions of each training dataset to ensure the trials are gender
and domain matched. All the 64 utterances used in a batch come
from the same gender and same dataset (to avoid cross gender,
cross language trials). The algorithm is repeated multiple times
with different number of speakers (m), for the male and female
partitions of every dataset. Finally, all the training batches are
pooled together and randomized.

In contrast, the trial sampling algorithm used in our previ-
ous work on NPLDA [11, 10] was much simpler. For each gen-
der of each dataset, we sample an enrollment utterance from a
randomly sampled speaker, and sample another utterance from
either the same speaker or a different speaker to get a target or a
non-target trial. This was done without any repetition of utter-
ances, to ensure that each utterance appears once per sampling
epoch. This procedure was repeated numerous times for multi-
ple datasets and for both genders to obtain the required number
of trials. All the trials were then pooled together, shuffled and
split into batches of 1024 or 2048 trials.

It is worth noting that the batch statistics of the two sam-
pling methods are significantly different. A batch of trials in
the previous sampling method (Algo. 1) can contain trials from
multiple datasets and gender, whereas in the modified sampling
method, which we will refer as Algo. 2, all the trials in a batch
are from a particular gender of a particular dataset.

5. Experiments and Results
The work is an extension of our work in [10]. The x-vector
model is trained using the extended time-delay neural network
(E-TDNN) architecture described in [24]. This uses 10 layers
of TDNNs followed by a statistics pooling layer. Once the net-
work is trained, x-vectors of 512 dimensions are extracted from
the affine component of layer 12 in the E-TDNN architecture.
By combining the Voxceleb 1&2 dataset [2] with Switchboard,
Mixer 6, SRE04-10, SRE16 evaluation set and SRE18 evalua-
tion sets, we obtained with 2.2M recordings from 13539 speak-
ers. The datasets were augmented with the 5-fold augmenta-
tion strategy similar to the previous models. In order to reduce
the weighting given to the VoxCeleb speakers (out-of-domain
compared to conversational telephone speech (CTS)), we also
subsampled the VoxCeleb augmented portion to include only
1.2M utterances. The x-vector model is trained using 30 di-
mensional MFCC features using a 30-channel mel-scale filter
bank spanning the frequency range 200 Hz - 3500 Hz,, mean-
normalized over a sliding window of up to 3 seconds and with
13539 dimensional targets using the Kaldi toolkit. More infor-
mation about the model can be found in [10].

The various backend PLDA models are trained on the
SRE18 evaluation dataset. The evaluation datasets used include
the SRE18 development and the SRE19 evaluation datasets. We
perform several experiments under various conditions. The pri-
mary baseline to benchmark our systems is the Gaussian PLDA
backend implementation in the Kaldi toolkit (GPLDA). The
Kaldi implementation models the average embedding x-vector
of each training speaker. The x-vectors are centered, dimen-
sionality reduced using LDA to 170 dimensions, followed by
unit length normalization.
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Model Duration of
utterance

SRE18 Dev SRE19 Eval

EER (%) CMin EER (%) CMin

GPLDA (G1) Full 6.43 0.417 6.18 0.512
GPLDA (G2) 20 secs 5.96 0.436 5.80 0.518

NPLDA (N1) Full 5.33 0.389 5.10 0.443
NPLDA (N2) 20 secs 5.57 0.359 5.32 0.432

Table 1: Performance comparison of training utterance dura-
tions (Full utterance vs 20 second segmenting) on GPLDA and
NPLDA[10] models

Model Sampling SRE18 Dev SRE19 Eval

EER (%) CMin EER (%) CMin

NPLDA (N2) Algo. 1 5.57 0.359 5.32 0.432
NPLDA (N3) Algo. 2 5.23 0.338 5.73 0.439

Table 2: Performance comparison with different sampling
techniques using NPLDA[10] method using previous sampling
method (Algo. 1) and proposed new sampling method (Algo. 2)

In the traditional x-vector system, the statistic pooling layer
computes the mean and standard deviation of the final TDNN
layer. These two statistics then are concatenated into a fixed
dimensional embedding. We also perform experiments where
we use variance instead of the standard deviation and compare
the performance.

In the following sections, we study the influence of reduced
training duration, and provide a performance comparison of the
sampling method (Algo. 1 vs Algo. 2). We then compare
the performance of Gaussian PLDA (GPLDA), Neural PLDA
(NPLDA), and the proposed end-to-end approach (E2E). The
PLDA backend training dataset used is the SRE18 Evaluation
dataset. We report our results on the SRE18 Development set
and the SRE19 Evaluation dataset using two cost metrics - equal
error rate (EER) and minimum DCF (CMin), which are the pri-
mary cost metrics for SRE19 evaluations.

5.1. Influence of training utterance duration

As discussed in Section 4.2, due to GPU memory considerations
and ease of implementation, we create a modified dataset by
splitting longer utterances into 20 second chunks (2000 frames)
after voice activity detection (VAD) and mean normalization.
We compare the performances of the models on the modified
dataset and the original one. The results are reported in Table
1. We observe that the performance of the systems are quite
comparable. This allows us to proceed using these conditions
in the implementation of the End-to-End model. All subsequent
reported models use 20 second chunks for PLDA training.

5.2. Comparison of sampling algorithms with NPLDA

The way the training trials are generated is crucial to how the
model trains and its performance. The performance comparison
of the two sampling techniques with PLDA models trained on
SRE18 Evaluation dataset can be seen in Table 2. Although the
nature of batch wise trials has changed significantly in terms of
number of speakers in each batch and gender matched batches
in the proposed new sampling method (Algo. 2), we see that
its performance is comparable to our previous sampling method
(Algo. 1).

Model Pooling
function Init. SRE18 Dev SRE19 Eval

EER (%) CMin EER (%) CMin

GPLDA (G2) StdDev - 5.96 0.436 5.80 0.518
GPLDA (G3) Var - 7.23 0.459 6.33 0.560
NPLDA (N2) StdDev G2 5.57 0.359 5.32 0.432
NPLDA (N4) Var G3 6.05 0.377 5.91 0.465
E2E (E1) StdDev N2 5.36 0.337 5.31 0.405
E2E (E2) Var N4 5.60 0.307 5.43 0.446

Table 3: Performance comparison between GPLDA, NPLDA
and E2E models using standard deviation and variance as the
secondary pooling functions. The model that was used to ini-
tialize the network is denoted in the 3rd column

5.3. End-to-End (E2E)

Using the proposed sampling method, we generate batches of
1024 trials using 64 utterances per batch. Both the NPLDA
and E2E models were trained with this batch size. We use the
Adam optimizer for the backpropagation learning. The perfor-
mance of these models are reported in Table 3. The NPLDA
model is initialized with the GPLDA model. The initialization
details of the models along with the pooling functions are re-
ported in the table. We compare performances using two differ-
ent statistics (StdDev or Var). We observe significant improve-
ments in NPLDA over the GPLDA system and subsequently
in E2E system over the NPLDA. Comparing E2E and GPLDA
when we use standard deviation as the pooling function, we ob-
serve relative improvements of about 23% and 22% in SRE18
development and SRE19 evaluation sets, respectively in terms
of the CMin metric. The relative improvements between E2E
and GPLDA when we use Var as the pooling function are about
33% and 20% for SRE18 development and SRE19 evaluation
sets, respectively for the CMin metric. Though, the cost func-
tion in the neural network aims to minimize the detection cost
function (DCF), we also see improvements in the EER metric
using the proposed approach. These results show that the joint
E2E training with a single neural pipeline and optimization re-
sults in improved speaker recognition performance.

6. Summary and Conclusions

This paper explores a step in the direction of a neural End-to-
End (E2E) approach in speaker verification tasks. It is an ex-
tension of our work on a discriminative neural PLDA (NPLDA)
backend. The proposed model is a single elegant end-to-end
approach that optimizes directly from acoustic features like
MFCCs with a verification cost function to output a likeli-
hood ratio score. We discuss the influence of the factors that
were key in implementing the E2E model. This involved mod-
ifying the duration of the training utterance and developing a
new sampling technique to generate training trials. The model
shows considerable improvements over the generative Gaussian
PLDA and the NPLDA models on the NIST SRE 2018 and 2019
datasets. One drawback of the proposed method is the require-
ment to initialize the E2E model with pre-trained weights of an
x-vector network.

Future work in this direction could include investigating
better sampling algorithms such as the use of curriculum learn-
ing [25], different loss functions, improved architecture for the
embedding extractor using attention and other sequence models
such as LSTMs etc.
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