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Abstract

Information on speaker characteristics can be useful as side in-
formation in improving speaker recognition accuracy. However,
such information is often private. This paper investigates how
privacy-preserving learning can improve a speaker verification
system, by enabling the use of privacy-sensitive speaker data to
train an auxiliary classification model that predicts vocal char-
acteristics of speakers. In particular, this paper explores the
utility achieved by approaches which combine different feder-
ated learning and differential privacy mechanisms. These ap-
proaches make it possible to train a central model while pro-
tecting user privacy, with users’ data remaining on their devices.
Furthermore, they make learning on a large population of speak-
ers possible, ensuring good coverage of speaker characteristics
when training a model. The auxiliary model described here uses
features extracted from phrases which trigger a speaker verifi-
cation system. From these features, the model predicts speaker
characteristic labels considered useful as side information. The
knowledge of the auxiliary model is distilled into a speaker ver-
ification system using multi-task learning, with the side infor-
mation labels predicted by this auxiliary model being the addi-
tional task. This approach results in a 6 % relative improvement
in equal error rate over a baseline system.
Index Terms: Speaker Verification, Multi-task Learning, Fed-
erated Learning, Differential Privacy

1. Introduction
Speaker verification is the problem of determining whether the
person speaking is a specific individual or someone else. It
is a vital feature for devices that use a “wake-up phrase” to
provide access to information, as actions should only be trig-
gered when this phrase is uttered by the device owner and not
an impostor. Speaker verification systems usually consist of
two components: a speaker embedding network; and a dis-
criminative method for comparing pairs of embeddings to deter-
mine whether or not those embeddings originate from the same
speaker [1, 2, 3, 4]. Additional side information can be useful
for speaker verification [5, 6, 7]. This side information could
be obtained through manual labelling. The setting that this pa-
per considers instead is one where side information is available
on many users’ devices, but it is privacy-sensitive and should
therefore not be uploaded to a central server. At a high level,
this paper tests three hypotheses:

1. It is possible to train a classifier on the audio of trigger
phrases to predict personal attributes of the speaker con-
sidered to be useful as side information.

2. Such a classifier can be improved with federated learning
while preserving users’ privacy.

3. The predictions of this classifier can be used to improve
the performance of speaker verification.

Previous work has shown that neural networks can learn to
predict speaker-dependent labels, such as gender [8, 9, 10], and
emotion [11, 12, 8], from utterances. The desired outcome from
testing the first hypothesis is a classifier that can predict similar
speaker-dependent labels from the same input as the baseline
speaker verification system used in this paper.

The second hypothesis is that it is possible to train a use-
ful classifier on distributed user data while preserving user pri-
vacy. This is achieved through the combination of federated
learning with differential privacy, which has been proposed and
put into practice successfully in a large body of prior work
[13, 14, 15, 16]. In federated learning, a batch of clients com-
pute statistics on their local data using the latest version of a
central model. The resulting statistics are combined on a server
to improve the central model. This process is repeated with
a different subset of users. Federated averaging [14] is com-
monly used for federated learning. In this algorithm, models
are trained locally on devices and the changes in model param-
eter values are averaged on a central server and used to update
the central model. However, local model updates, which are
derived from the data, might leak sensitive information. To pre-
vent this, differential privacy (DP) [17] is used in this paper.
Prior work has provided few examples of high-utility applica-
tions on real-world models and datasets, and none on classify-
ing speakers. This paper presents an analysis of different pri-
vacy regimes on training accuracy and convergence in this do-
main.

The third hypothesis states that the encoded knowledge of
an auxiliary model trained on side information can be used to
improve a speaker verification system. Manually labelled side
information has been shown effective for improving speaker
verification systems [5, 6, 7]. The baseline system [18] employs
the common approach of using a speaker embedding network
and scoring pairs of embeddings using cosine similarity. This
paper shows that it can be improved by enriching the speaker
embedding network with knowledge distilled from the auxiliary
model.

The structure of this paper is as follows. Section 2 pro-
vides a high-level overview of how federated learning can be
made private using differential privacy. Section 3 introduces the
baseline speaker verification system used in production. Sec-
tion 4 introduces the classifier trained on user data in a privacy-
preserving manner to predict side information from trigger
phrases, named the “vocal classification model”. Section 5 ex-
plains the approach for including the vocal classification model
in the speaker verification training setup to ultimately improve
performance. Section 6 presents experimental results.

2. Federated learning with privacy
Data that can be used to improve machine-learned models of-
ten belongs to individuals or users and is therefore distributed
over their devices. Federated learning is an approach that makes
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learning in this scenario possible. In federated learning, a cen-
tral model is trained over a distributed dataset, where a large
number of nodes (e.g. user devices) hold variable-sized sub-
sets of the data. A model update or gradient [19, 20, 14] is
computed at the node on the local data, and communicated to a
central server. A large number of these updates or gradients are
combined at the central server during each iteration of training.
A global update to the central model is computed as the average
of local updates. This is called “federated averaging” [14].

Many organisations and policy makers are committed to up-
holding user privacy. This makes federated learning an impor-
tant approach to consider when dealing with data that is pri-
vate, as it goes some way to protecting privacy. However, even
though raw user data is not communicated with the server, it has
been shown that model updates can leak information about the
raw data [21, 22]. As mentioned in Section 1, there is a large
body of work investigating and putting approaches into practice
which combine federated learning with some privacy protec-
tion. One common way to mitigate these threats to privacy is
to apply differential privacy (DP) [17, 13, 15, 16]. Differen-
tial privacy makes it possible to add noise to the model updates
to give a guaranteed upper bound on the amount of information
that can be leaked. DP can be used to protect an individual’s up-
date by applying noise at the distributed node. DP can also be
applied centrally to protect the privacy of individuals’ updates
after aggregation [23].

In this paper, a number of privacy regimes are explored in
simulation. One of these regimes is to use a weaker form of
local DP [24], combined with central DP. This form of local DP
is applied to individual updates which are sent for aggregation
on a secure server. This algorithm is an optimal method for pro-
viding updates (i.e. high-dimensional vectors) with the highest
possible signal-to-noise ratio (SNR). The algorithm is tuned to
achieve an SNR that permits high accuracy, while still allowing
strong DP guarantees in deployment scenarios where it is ap-
plicable, e.g., because of shuffling [25] and subsampling [26].
In addition, while doing federated averaging, the server adds
enough additional noise to ensure strong central DP guarantees
(as per the moment’s accountant [13].

3. Speaker verification
The baseline speaker verification system improved in this work
is the system described in [18], which builds on an underlying
voice trigger model that recognizes the trigger phrase. The input
of the speaker verification system is a fixed-length supervector
with features generated from forward propagation of the trigger
phrase audio through the voice trigger model. The voice trigger
system uses 26 Mel Frequency Cepstral Coefficients to param-
eterize a hidden Markov model (HMM) which models the trig-
ger phrase. The means of the 31 HMM states (other than those
modelling silence) are concatenated to form the supervector, re-
sulting in 26× 20 = 520 dimensions.

The supervector consists of features about the particu-
lar trigger phrase and the baseline speaker verification sys-
tem contains a neural network that transforms the supervector
into “speaker space”, only focusing on retaining characteristics
about the speaker itself. The neural network is a fully connected
neural network with five layers. The first four layers consist of
256 dimensions, with batch normalization [27] and sigmoid ac-
tivations. The fifth layer is designed to be the embedding layer,
and is therefore only a linear transform of dimension 100 with
batch normalization. In the training phase, a sixth layer of size
K with softmax activation is added as a head to the architec-

ture, where K is the number of speakers in the training dataset.
Training is defined as a speaker identification task, where the
labels are one-hot representations of theK unique speakers and
training is performed by minimizing the cross-entropy with the
output softmax distribution. The trained embedding is used for
measuring the similarity between two utterances by measuring
the distance in “speaker space”.

The speaker verification system stores multiple speaker
vectors generated from a set of enrolment utterances. At test
time, the acoustic instance of a trigger phrase is transformed
into a fixed-length supervector from the HMM states of the
voice trigger model, transformed again into a speaker vector
by the speaker embedding network, and compared to the en-
rolment speaker vectors using cosine similarity. The average
cosine similarity between the test speaker vector and the enrol-
ment vectors can be interpreted as a speaker verification score.
Following the notation of [28], the score is defined as

SVscore =
1

N

N∑
i=1

fnn(ua)
>fnn(u

spk
i )

‖fnn(ua)‖‖fnn(u
spk
i )‖

(1)

where uspk
i is the ith out of N supervectors from the enrolment

phase, ua is the test supervector, and fnn is the function ex-
pressed by the speaker embedding network. The speaker verifi-
cation score SVscore is then compared to the operating thresh-
old λ to reject or accept the request following the trigger phrase.

The work presented in this paper mainly targets the
Japanese language (ja JP), where the training dataset origi-
nates from a speaker population of size K = 18700. The
speaker embedding network is trained with a batch size of 256,
a weight decay of 5 · 10−4, initial learning rate of 10−4 and
momentum of factor 0.9. The performance of this setup is pre-
sented as Baseline in Section 6. Improvements on the baseline
model presented in the paper are also trained with the same hy-
perparameters unless otherwise stated.

4. Vocal classification
The first hypothesis proposes that classification of side infor-
mation can be learned from the voice trigger phrase only, if the
side information is correlated with vocal characteristics. To test
the hypothesis, a fully connected deep neural network was de-
fined which uses the same input features as the baseline speaker
verification system, i.e. the 520-dimensional supervector, and
predicts the side information of the speaker. This model is re-
ferred to as the “vocal classification model”. The target labels
are sensitive information and are stored privately on devices,
hence larger-scale experiments of training the vocal classifica-
tion model were only possible using the framework explained
in Section 2.

Experiments were carried out with limited central data to
evaluate the effect of applying differential privacy on federated
training of the vocal classification model. In addition to accu-
racy, the signal-to-noise ratio is measured throughout experi-
ments to quantify the signal quality of model updates where DP
has been applied. Here, SNR is computed as the ratio of the
L2 norm of the un-noised model update to that of the added
DP noise, i.e. SNR = ||unnoised update||2

||DP noise||2
. Figure 1 shows the

accuracy of the following experiments in simulation on an eval-
uation set:

No DP No DP mechanism is applied. The resulting accuracy
of 95.6% acts as an upper bound for the remaining ex-
periments because introducing any DP mechanism to im-
prove privacy guarantees is expected to have a negative

4329



impact on accuracy. Note that even in the “No DP” sce-
nario, there is some privacy protection, as anonymity is
assumed. The accuracy of this model proves the first hy-
pothesis, namely that a predictor of vocal characteristics
can be learned from only the voice trigger phrase.

Local DP The strongest form of differential privacy, local DP,
is applied using the Gaussian mechanism [29]. The pri-
vacy parameters used were ε = 2 and δ = 10−5. This re-
sults in a significant negative impact on the performance
of the model, yielding an accuracy of 82.1%, with a low
SNR of 0.19 observed for the first central model up-
date. The result is still much better than random, which
shows that useful knowledge can be learned even with
such strict privacy guarantees and low SNR.

Central DP The Gaussian moments accountant is applied on
the aggregate model update to provide central privacy
guarantees. The privacy parameters used were ε = 2 and
δ = 10−5. For the moments accountant, the population
size is assumed to be 100M, the cohort size is 300 and
the maximum number of central iterations is 60. The ac-
curacy of the trained vocal classification model is 94.6%,
which is close to the “No DP” case. An SNR of 1.31 is
observed for the first central model update, which is sig-
nificantly higher than “Local DP”. However, this does
not have any local privacy guarantees.

Central DP with weaker local DP Falling between the “local
DP” and “Central DP” experiments, a weaker form of
local DP [24] is used in combination with the Gaussian
moments accountant for the central DP mechanism. This
combination results in an accuracy of 94.1%, which is a
good privacy-utility trade-off. The privacy parameters
used in the weaker form of local DP translate to ε =
25.7, which is in the high-epsilon regime. However, with
the assumed privacy amplification through shuffling and
sampling for anonymity, and the application of central
DP with ε = 2 and δ = 10−5, this may be considered
a reasonable operating point. The SNR observed here is
1.07, which is significantly higher than “local DP” and
expected considering the high ε value.

Figure 1: Accuracy of the vocal classification model on an eval-
uation dataset, trained with different DP mechanisms.

Hyperparameter tuning was performed in simulations with
limited central data. The best performing model was used
as an initialization when training with real devices. Switch-
ing to training the vocal classification model distributed on-
device yielded multiple benefits. Firstly, additional categories

of side information not previously available in the limited cen-
tral dataset were used. Secondly, magnitudes more data is avail-
able distributed on devices. The cohort of users for each cen-
tral model update was increased to 5000, resulting in higher
SNR for the same local DP parameters and smaller noise vari-
ance from the moments accountant used centrally. This larger
effective corpus means that there is more speaker coverage.
Thirdly, while labels of the central dataset may be erroneous due
to errors in manual human annotation, on-device training uses
ground truth labels, thereby increasing accuracy, while protect-
ing privacy.

5. Multi-task learning of the
speaker verification system

The third hypothesis proposed in this paper is that the encoded
knowledge of a vocal classification model can act as comple-
mentary information for training a more accurate speaker ver-
ification system. Multiple approaches for utilizing the knowl-
edge of the vocal classification model were experimented with:
static rules for rejecting a request based on the model output,
using the output of the model as input to intermediate layers
when training the speaker embedding network, and multi-task
learning with pseudo-labels. The latter approach was the most
successful and is the focus of the rest of the paper.

Specifically, the network was trained to predict the speaker,
like the baseline system, and, additionally, the side informa-
tion. The loss was the sum of the original loss and a new term.
Minimizing this loss distilled the knowledge [30] of the vocal
classification model, encoded in the pseudo-labels it generates.
Just as with the baseline system, the final classification layer
was removed during inference to expose the embedding layer.
Not only did distilling the knowledge of the vocal classifica-
tion model outperform the two other approaches mentioned, but
the final architecture of the speaker verification system remains
unchanged. Since the vocal classification model is a model
trained with differential privacy, any knowledge that is distilled
by the speaker embedding network is also protected by the post-
processing theorem of differential privacy [17].

The vocal classification model is generally confident in its
predictions, mostly generating an output probability of 0.995
for the highest predicted class, even where it is incorrect. To
better distill the knowledge for cases like this, the concept of
temperature is used [30]. A temperature higher than 1 softens
the output distribution, making the probabilities that were pre-
viously minuscule more representative.

Given a mini-batch of data X = {x(t)} and corresponding
labels Y = {y(t)}, the objective function to minimize for the
multi-task setup is

Lmtl(X,Y) =
∑
t

(
Lspk(x

(t),y(t)) + γLvc(x
(t))
)
, (2)

where Lspk is the cross-entropy loss function for speaker iden-
tification as in the baseline setup, γ is a weight for the vocal
classification loss relative to speaker identification, and the vo-
cal classification loss Lvc is defined as

Lvc(x) =
T 2

N

N∑
i=0

(
eVi(x)/T∑
j e
Vj(x)/T

− ezi/T∑
j e

zj/T

)2

. (3)

Here, zi is the ith logit of the predicted side information from
the vocal classification layer in the speaker embedding train-
ing setup, Vi(x) is the ith logit from forward propagating the
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Table 1: Performance of the two tasks in the multi-task learning
setup on an evaluation set.

Model Speaker accuracy (%) Side information
accuracy (%)

Baseline 82.56% -
VC offline 83.37% 98.22%
VC FL 83.59% 98.15%

supervector x through the vocal classification model and T is
the temperature. The above can be interpreted as the mean
squared error between the “softened” softmax distributions.
The mean squared error is multiplied by T 2 because otherwise
∂Lvc
∂zi

scales with a factor of 1
T2 for large T (see section 2.1 of

[30]).

6. Results
In this section, results of three models are presented, all with
the same final network architecture. The difference is only in
how the speaker embedding is trained. The first model, Base-
line, is the baseline production system described in Section 3.
The second model, VC offline, follows the setup described in
Section 5 where the knowledge to distil is from a vocal clas-
sification model trained on the limited offline data (blue line
in Figure 1). The third model, VC FL, also follows the setup
from Section 5, but with a vocal classification model trained
with federated learning. The mechanism in [24] was used for
local privacy guarantees and the Gaussian mechanism with mo-
ments accountant was used for central privacy guarantees.

Multi-task learning of the speaker embedding was con-
ducted on 1.7 million utterances of the trigger phrase from
18700 speakers, all preprocessed by the voice trigger system to
extract 520-dimensional supervectors. The softmax layer clas-
sifying side information has six outputs and the softmax layer
classifying speakers has one output per speaker. The tempera-
ture T was set to 10 for all experiments, and the weight γ of the
side information classification loss was roughly tuned to bal-
ance the losses of the two tasks. Evaluation accuracy was mea-
sured on another set of 93600 utterances from the same popu-
lation of speakers as the training dataset.

The accuracies of speaker identification and side informa-
tion classification on the evaluation dataset are shown in Table
1. The accuracy on the speaker identification task in the multi-
task setting increases relative to the baseline. It is possible that
the side information has both a regularizing effect on speaker
identification as well as helping propagate signals through the
network. The accuracy on the classification of the side infor-
mation is expected to be close to 100% because the labels are
generated from the vocal classification model, and this larger
DNN should be able to capture the encoded knowledge of the
vocal classification model.

As mentioned in Section 3, a speaker profile is defined by a
set of supervectors from enrolment utterances. When evaluating
the speaker verification system with the newly trained speaker
embedding network, each of 234 speaker profiles available were
compared to supervectors of test utterances using Equation 1.
A subset of the test utterances were unique utterances from the
234 speakers which had profiles, and the rest originated from
imposter speakers that did not match any profile. A total of
65545 pairs of speaker profiles and test utterances were com-

Table 2: Performance of speaker verification on a test set.

Model EER (%)

Baseline 10.10
VC offline 9.95
VC FL 9.50

pared and a test utterance was accepted or rejected by applying
a threshold θ on the speaker vector score SVscore. Performance
at the equal error rate (EER) is shown in Table 2 for the three
experiments. The multi-task setup with knowledge distillation
of a vocal classification model trained on limited central data
yields a 1.5% absolute improvement over the baseline. The
same setup with a vocal classification model trained on-device
with privacy-preserving federated learning yields a 6% rela-
tive improvement in EER. These results prove both our second
and third hypotheses, namely that privacy-preserving federated
learning can be used to improve the vocal classification-based
system (due to the gain over the “VC offline” experiment), and
that the vocal classification model can be used through multi-
task learning to improve the speaker verification system (due to
the gain over the “Baseline” system).

7. Conclusions
This paper demonstrates how a centrally trained speaker verifi-
cation system can be improved by distilling the knowledge of
an auxiliary model that was trained with side information on a
much broader population using federated learning, while pro-
tecting user privacy. Firstly, the auxiliary model, which clas-
sifies side information, was trained using data distributed over
millions of real devices. Additional experiments simulated dif-
ferent combinations of federated learning and differential pri-
vacy when training this model, to highlight the utility/privacy
trade-off expected when using such approaches. The accuracy,
time to convergence and signal-to-noise ratio clearly show the
relative ordering of these approaches in terms of utility. Sec-
ondly, the encoded knowledge of the auxiliary model was dis-
tilled into the speaker embedding network of an existing speaker
verification baseline system using multi-task learning. Finally,
a relative improvement of 6% in equal error rate for speaker
verification was achieved using this technique while maintain-
ing the same network architecture as the baseline. This result
shows that the speaker characteristic knowledge distilled into
the speaker verification network resulted in speaker embeddings
which are more discriminative.
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