
Strategies for End-to-End Text-Independent Speaker Verification

Weiwei Lin1, Man-Wai Mak1 and Jen-Tzung Chien2

1 Dept. of Electronic and Information Engineering,
The Hong Kong Polytechnic University

2Dept. of Electrical and Computer Engineering,
National Chiao Tung University

weiwei.lin@connect.polyu.hk, man.wai.mak@polyu.edu.hk, jtchien@nctu.edu.tw

Abstract
State-of-the-art speaker verification (SV) systems typically con-
sist of two distinct components: a deep neural network (DNN)
for creating speaker embeddings and a backend for improv-
ing the embeddings’ discriminative ability. The question which
arises is: Can we train an SV system without a backend? We be-
lieve that the backend is to compensate for the fact that the net-
work is trained entirely on short speech segments. This paper
shows that with several modifications to the x-vector system,
DNN embeddings can be directly used for verification. The
proposed modifications include: (1) a mask-pooling layer that
augments the training samples by randomly masking the frame-
level activations and then computing temporal statistics, (2) a
sampling scheme that produces diverse training samples by ran-
domly splicing several speech segments from each utterance,
and (3) additional convolutional layers designed to reduce the
temporal resolution to save computational cost. Experiments
on NIST SRE 2016 and 2018 show that our method can achieve
state-of-the-art performance with simple cosine similarity and
requires only half of the computational cost of the x-vector net-
work.
Index Terms: Speaker verification; end-to-end speaker embed-
ding; deep neural network; x-vector

1. Introduction
Speaker verification has become an increasingly popular choice
for biometric authentication [1]. Depending on whether the
transcriptions of the enrollment and the test speech are the
same or not, speaker verification can be divided into text-
dependent and text-independent. Text-independent SV (TI-SV)
has broader applications and is more challenging. This paper
focuses on TI-SV.

Recently, deep neural network (DNN) based approaches
have gained a lot of attention and showed superior performance
compared to i-vector/PLDA [2, 3]. In [4], the authors proposed
to use a fully-connected network to process contextual filter-
bank features. The averaged activation at the last layer was used
for cosine-distance scoring. An advanced DNN architecture for
SV was proposed in [5], where a network comprising several
inception blocks was trained by minimizing the triplet loss.

Among the DNN-based approaches, the x-vector approach
[6] is considered as state-of-the-art front-end method. Com-
pared with previous DNN-based approaches, several features
of x-vector approach stand out: (1) the use of extensive data
augmentation with real-life noise and reverberation, (2) the use
of short training segments randomly sampled from training ut-
terances, and (3) the production of segment-level representa-
tions by concatenating the mean and the standard deviation of
the frame-level activations. Recently, research has shown that

replacing the TDNNs or CNNs in an x-vector network by the
ResNets [7] or DenseNets [8] can improve performance [9–11].
However, even with these advanced architectures, the above
three strategies of the x-vector still play critical roles in achiev-
ing good performance. It is worth noting that the embeddings
extracted from the x-vector network using full-length utterances
are not good enough for speaker verification. A backend model
that takes the embeddings as input is required during scoring to
account for the non-speaker variability.

An end-to-end system using only an integrated neural net-
work is attractive in several aspects. Firstly, hyper-parameter
optimization is easier in an end-to-end system. In an x-vector
system, the DNN and the backend are optimized separately,
which complicates the hyper-parameter search as validation has
to be done for the network and the backend separately. Sec-
ondly, although training the backend itself is reasonably fast,
preparing the training data (i.e., the x-vectors) for it can be time-
consuming. Besides, it is not clear which part of the dataset
should be used for backend training. Thirdly, an end-to-end
system is easier to deploy and debug. In this paper, we propose
three modifications to improve DNN embeddings’ discrimina-
tive ability without relying on a backend. Firstly, instead of ran-
domly sampling a single segment out of an utterance, multiple
segments are sampled from an utterance and spliced together
to form a long training segment. Secondly, we introduce ad-
ditional convolutional layers as learnable pooling layer. This
strategy can save computation cost by reducing temporal res-
olution, which is especially desirable when working with long
speech segments. Thirdly, we introduce a mask-pooling layer
as a special form of data augmentation inside the network. The
mask-pooling layer produces multiple utterance-level represen-
tations out of a single speech segment by randomly masking out
frame-level activations and then computing the temporal statis-
tics of the remaining activations across time.

2. X-Vector System
An x-vector network consists of three parts: frame-level
time delay neural networks (TDNNs), utterance-level fully-
connected (FC) layers, and a statistics pooling layer that bridges
the frame-level layers and utterance-level layers [6,12]. TDNNs
are a particular form of convolutional neural networks (CNNs).
TDNN skips the computation at chosen positions while main-
taining the same receptive-field size as a CNN. The statistics
pooling layer concatenates the mean and the standard deviation
of the activations from the last convolutional layer. The con-
catenated vectors are passed to two FC layers. The network is
to minimize the standard cross-entropy loss. The network is
trained using small chunks sampled from the entire utterances.
After training, each utterance’s embedding can be extracted

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-20924308



Table 1: Architecture of our x-vector network. Nspk denotes the
number of speakers

Layer Size, Stride Channel in × Channel out

Conv0 5, 1 23 × 512
Conv1 2, 2 512 × 512
Conv2 3, 1 512 × 512
Conv3 3, 1 512 × 512
Conv4 2, 2 512 × 512
Conv5 1, 1 512 × 1536

Stats pooling – –
FC0 – 3072 × 512
FC1 – 512 × 128

AM-softmax [13] – 128 × Nspk

from the first affine layer after statistics pooling. A backend
consisting of LDA and PLDA is trained using the embeddings
as input and speaker identities as the labels.

3. Proposed End-to-End Approach
In an x-vector system, the segments for training the network
are densely sampled from the full-length utterances. The sam-
pled segments typically range from 200 ms to 400 ms, which
are much shorter than the entire utterances. As a result, the em-
beddings may not be a good representation of long utterances.
A simple solution is to use longer segments or directly use the
entire utterances for training. This strategy, however, also has
problems. Because the training segments are sampled from the
entire utterances, long segments have less sample diversity than
short segments. Training with long segments alone may lead to
overfitting. Another disadvantage is that long segments require
more computation and GPU memory. Ideally, we want to have
both short and long segments for training. This approach, how-
ever, will lead to substantial computational burden. We propose
three techniques that reduce the duration discrepancy between
the training segments of the x-vector network and the test seg-
ments used for deriving the test x-vectors while maintaining the
sample diversity and computation cost at a reasonable level.

3.1. Splice Sampling

When training an x-vector network, one segment is sampled
from one utterance. A drawback of this sampling approach is
that each training segment can only contains a number of con-
secutive frames. A good speaker embedding should be able to
exploit speaker information across a longer time span. There-
fore, we propose to sample several chunks of non-consecutive
segments from each training utterance and splice them together
to form a single training segment as shown in Fig. 1. This ap-
proach can diversify training data when using long segments for
training.

3.2. CNN Local Pooling

Subsampling operations, such as max-pooling or mean pooling,
can significantly reduce the computation cost of a CNN by de-
creasing the resolution of the input. In addition, max-pooling
or mean pooling introduces invariance to translation. Although
translation invariance is not very important to speaker embed-
ding as the statistics pooling layer computes the mean and the
standard deviation across time, the computational reduction is
still very attractive. In this paper, we consider a pooling opera-

tion that operates over the time axis.
Denote I as the feature map to be input to a pooling layer.

The max pooling operation takes the maximum value inside the
kernel and shifts the kernel with stride S to produce the output
O:

O[i, t] = max
k=0,...,K−1

I[i, S × t+ k], (1)

where k indexes the elements inside the kernel, K is the length
of the kernel, i is the channel index, and t is the time index
of the output. The mean pooling can be described in a similar
manner:

O[i, t] =
1

K

∑
k=0,...,K−1

I[i, S × t+ k]. (2)

It was demonstrated in [14] that the pooling operations in Eq. 1
and Eq. 2 can be replaced by a convolutional layer with in-
creased stride without loss in accuracy. Without the pooling
layer, given the input feature map I and the convolutional filter
matrix W, the output of the convolutional layer at channel j
and frame t is:

O[j, t] =
∑

k=0,...,K−1

∑
i

W[j, i] · I[i, S × t+ k], (3)

where j indexes the output channel and i indexes the input chan-
nel. Here we omit the bias term for simplicity. We can see the
similarity between the convolutional layer and the pooling lay-
ers from Eq. 1–Eq. 3. In fact, if we use a kernel parameterized
by 1/K with kernel size K and stride S, the convolutional layer
would act like mean pooling [14].

We adopt two 1D convolutional layers with kernel size 2
and stride 2 in our DNN as a way to reduce subsequent compu-
tation. The architecture of our network is summarized in Table
1. Because the two convolutional layers with stride 2 reduce
the temporal resolution by half for the subsequent convolutional
layers, for an input sequence of size 23×3000, our network re-
quires only 4.3 GMac (Giga multiply–accumulate operation) to
produce an embedding as compared to 8.0 GMac in the original
x-vector network.

3.3. Mask-pooling Layer

In addition to high computational cost, another disadvantage of
using long training segments is the lack of sample diversity. We
propose a novel mask-pooling layer that augments training data
without significantly increasing computational cost.

Assume that the activation at the last convolutional layer is
zt, where t is a time index. The mask-pooling layer involves
the following operations. First, a mask rt is sampled from a
Bernoulli distribution parameterized by p. Then, we multiply
zt with rt to decide whether we keep this frame or not. The
resulting frames are denoted as {ẑt}. Finally, the utterance-
level representation x is obtained by concatenating the mean
and the standard deviation of {ẑt} as follows:

rt ∼ Bernoulli(p), (4)
ẑt = rt · zt, (5)
x = Concat(MEAN({ẑt}), STD({ẑt}). (6)

Here, MEAN(·) and STD(·) are operated on non-zero elements
in {ẑt}. We denote Eqs. 4–6 in whole as:

x = MaskPooling({zt}, p). (7)

4309



Frequency
bin

Time	axis

join join

Figure 1: Splice sampling on a spectrogram. Three chunks are taken out of the spectrogram and spliced together to form a training
segment.

The above operations are very similar to Dropout [15]. How-
ever, unlike Dropout, we can repeatedly apply this operations
I times with a different pi sampled from a uniform distribution
over 0 to 1:

xi = MaskPooling({zt}, pi), i = 1, . . . , I. (8)

Suppose f(·) represents the fully-connected layers and the soft-
max layer. Assume that the loss function for cross-entropy is
denoted byL. Then the loss for these I copies of the augmented
data is calculated by

I∑
i=1

L(f(xi),y), (9)

where y is the label of all xi. Different from the data augmenta-
tion methods in [6], where noise and reverberation were added
to the waveforms, our mask-pooling layer operates on the inter-
nal representation of the network. In terms of augmentation
effect, mask-pooling produces utterance-level representations
with different durations. It is similar to the cutout and spec-
trum augmentation [16, 17] in that the augmented sampled are
produced by withholding information. An important advantage
of the proposed method over cutout and spectrum augmentation
is that for I augmented samples, there is only one forward prop-
agation to the convolutional layers and I forward propagations
through the fully-connected layers.

4. Experiments
4.1. Data Preparation

The training data include NIST SRE 2004–2010 (SRE04–10 in
short) and all of the Switchboard data. We followed the data
augmentation strategy in the Kaldi SRE16 receipt [6, 18]. The
training data were augmented by adding noise, music, reverb,
and babble to the original speech files in the datasets. After
filtering out utterances shorter than 500 ms and speakers with
less than 8 utterances, we were left with 4,808 speakers. 23-
dimensional Mel-frequency cepstral coefficients (MFCC) were
computed from the 8kHz speech files. Mean normalization was

applied to the MFCC using a 3-second sliding window. Non-
speech frames were removed using Kaldi’s energy-based voice
activity detector.

4.2. Training of DNNs and Backend Classifiers

For fair comparisons, all systems under evaluation were trained
to minimize the additive margin loss using an Adam optimizer
[19] with learning rate set to 0.001. In the x-vector systems,
embeddings were extracted from the affine transformation layer
after statistics pooling. For the proposed system, the embed-
dings were extracted from the last fully-connected layer before
computing log-softmax. We used a standard backend com-
prised of LDA, length-normalization, and PLDA. Both LDA
and PLDA were trained using the embeddings extracted from
full-length utterances. We used correlation alignment [20] for
domain adaptation in the PLDA backend. For the end-to-end
systems, we applied a whitening transformation to the enroll-
ment data and the test data before cosine-distance scoring. The
whitening matrix was estimated using target-domain data. We
used AM-softmax with a margin of 0.35 in all the systems.

4.3. Evaluation

All systems were evaluated on the evaluation set of SRE 2016
and 2018. The SRE16 evaluation set is composed of Tagalog
and Cantonese telephone conversations. For SRE18, we only
conducted the evaluation on the CMN2 portion, which consists
of Tunisian Arabic conversations. Both evaluations aim to eval-
uate the robustness of systems against noise, channel, and lan-
guage mismatches. We report results in equal error rate (EER)
and minimum detection cost function (minDCF). Both metrics
were obtained using the scoring tools provided by NIST.

5. Results
We present the performance of the proposed method and x-
vector systems on SRE16 and SRE18. We conducted experi-
ments for three different DNNs, namely Xvec short, Xvec long
and Our Xvec. Xvec short refers to the x-vector network
trained on 200ms–400ms chunks. Xvec long refers to the x-
vector network trained on 1200ms chunks. Our Xvec refers to

4310



Convs

Copy

Copy

Masking
Stats 
pooling

Stats 
pooling

prediction

Labels

Time axis

Frequency 
bin

predictionMaskingTime axis

Channels

Spectrogram
Feature map

Feature map Masked Feature map Embedding
Class probabilities

Figure 2: Illustration of the-mask pooling operation in the proposed x-vector network. For simplicity, only two random masks (I = 2
in Eq. 8) are shown.

Table 2: Comparison of the performance using x-vector systems and the proposed approach with different scoring methods.

SRE16 SRE18

Front-end Scoring EER(%) minDCF EER(%) minDCF

Xvec short PLDA 8.34 0.593 8.73 0.556
Xvec long PLDA 8.96 0.593 8.83 0.570
Our Xvec PLDA 8.90 0.600 8.91 0.598

Xvec short Cosine 10.57 0.674 11.98 0.681
Xvec long Cosine 9.88 0.653 11.12 0.643
Our Xvec Cosine 8.26 0.583 8.65 0.551

the x-vector network with the proposed three modifications. We
also compared systems that use the PLDA backend with sys-
tems that use cosine similarity.

As can be seen from Table 2, when directly using co-
sine similarity for scoring, Xvec long outperforms Xvec short.
However, with the PLDA backend, it is the other way around.
Still, the best performance for the x-vector systems is obtained
by using short training segments with a PLDA backend. The
proposed approach (Our Xvec) outperforms the best x-vector
system with simple cosine-distance scoring. Another interest-
ing finding is that the proposed approach does not benefit from
the PLDA backend as the x-vector system does, which suggests
that a backend is no longer necessary.

6. Conclusions

In this paper, we showed that with three modifications to the
x-vector system, we were able to train state-of-the-art speaker
verification systems without a backend. The proposed methods
not only eliminated the need for the complicated backend but
also reduced the x-vector extraction time to about half. In the
future, we will further investigate the effect on how the dura-
tion mismatch between training and test utterances affects the
performance of speaker embeddings.

7. Acknowledgment
This work was supported by RGC of Hong Kong,Grant
152518/16E and 152137/17E, and Taiwan MOST, Grant 109-
2634-F-009-024.

8. References
[1] M. Marras, P. A. Marı́n-Reyes, J. Lorenzo-Navarro, M. C. San-

tana, and G. Fenu, “Deep multi-biometric fusion for audio-visual
user re-identification and verification,” in Proc. ICPRAM, M. D.
Marsico, G. S. di Baja, and A. L. N. Fred, Eds., vol. 11996.
Springer, 2019, pp. 136–157.

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[3] P. Li, Y. Fu, U. Mohammed, J. Elder, and S. Prince, “Probabilistic
models for inference about identity,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 144–
157, 2012.

[4] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” in Proc. ICASSP. IEEE, 2014,
pp. 4052–4056.

[5] C. Zhang, K. Koishida, and J. H. Hansen, “Text-independent
speaker verification based on triplet convolutional neural net-
work embeddings,” IEEE/ACM Transactions on Audio, Speech
and Language Processing, vol. 26, no. 9, pp. 1633–1644, 2018.

4311



[6] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust DNN embeddings for speaker recogni-
tion,” in Proc. ICASSP. IEEE, 2018, pp. 5329–5333.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[8] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. of IEEE
International Conference on Computer Vision and Pattern Recog-
nition, 2017, pp. 4700–4708.

[9] W. Lin, M. W. Mak, and L. Yi, “Learning mixture representation
for deep speaker embedding using attention,” in Proc. Odyssey
2020 The Speaker and Language Recognition Workshop, 2020,
pp. 210–214.

[10] N. N. An, N. Q. Thanh, and Y. Liu, “Deep CNNs with self-
attention for speaker identification,” IEEE Access, vol. 7, pp.
85 327–85 337, 2019.

[11] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb:
Large-scale speaker verification in the wild,” Comput. Speech
Lang., vol. 60, 2020.

[12] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Proc. Interspeech, 2015.

[13] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[14] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” in Proc. of
ICLR, 2015.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929–1958, 2014.

[16] T. DeVries and G. W. Taylor, “Improved regularization of
convolutional neural networks with cutout,” arXiv preprint
arXiv:1708.04552, 2017.

[17] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[18] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proc. Workshop on Au-
tomatic Speech Recognition and Understanding, 2011.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[20] B. Sun, J. Feng, and K. Saenko, “Correlation alignment for unsu-
pervised domain adaptation,” in Domain Adaptation in Computer
Vision Applications. Springer, 2017, pp. 153–171.

4312


