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Abstract

Typically, speaker verification systems are highly optimized
on the speech collected by close-talking microphones. How-
ever, these systems will perform poorly when the users use far-
field microphones during verification. In this paper, we pro-
pose an adversarial separation and adaptation network (AD-
SAN) to extract speaker discriminative and domain-invariant
features through adversarial learning. The idea is based on the
notion that speaker embedding comprises domain-specific com-
ponents and domain-shared components, and that the two com-
ponents can be disentangled by the interplay of the separation
network and the adaptation network in the ADSAN. We also
propose to incorporate a mutual information neural estimator
into the domain adaptation network to retain speaker discrim-
inative information. Experiments on the VOICES Challenge
2019 demonstrate that the proposed approaches can produce
more domain-invariant and speaker discriminative representa-
tions, which could help to reduce the domain shift caused by
different types of microphones and reverberant environments.
Index Terms: Far field speaker verification; domain adaptation;
adversarial learning; domain mismatch

1. Introduction

Today’s speaker recognition systems have achieved remarkable
performance under controlled environments such as quiet of-
fices and clean telephone channels. However, far-field speaker
recognition is still challenging because the environmental noise
and reverberation effect are hard to control. Due to the dif-
ference in microphone characteristics, there is a domain mis-
match between near-field microphone speech and far-field mi-
crophone speech. The mismatch can make a speaker recogni-
tion system that is trained on near-field microphone speech to
perform poorly on far-field microphone speech. Domain adap-
tation (DA) can be applied to address this problem.

Domain adaptation algorithms for speaker verification
(SV) either adapt the probabilistic linear discriminant analy-
sis (PLDA) models to fit the target data [1] or find a common
embedding space in which the feature distributions have low
discrepancy across multiple domains. For the former, a recent
approach is to use the concept of correlation alignment [2] to
estimate a pseudo-in-domain covariance matrix. The matrix is
then interpolated with the out-of-domain covariance matrix of
the PLDA model [3]. Finding a common embedding space is
a more general approach in that it is independent of the back-
end. Research in this direction has focused on compensating
for the inter-data set variability [4], projecting out the inter-
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dataset variability [5], and normalizing the covariance of in- and
out-domain data [6]. Huang and Bocklet [7] applied invariant
representation learning to find noise robust speaker representa-
tions. The idea is to minimize the cosine distance and mean
squared error at the embedding layer of the x-vector network
across clean and noisy utterances. In [8], the maximum mean
discrepancy (MMD) was added to the objective function of an
autoencoder. After training, domain-invariant features were ex-
tracted from the middle layer of the autoencoder.

More recent research on domain adaptation is based on ad-
versarial learning. Wang et al. [9] applied domain adversar-
ial training (DAT) to learn speaker discriminative and domain-
invariant representations. The proposed approach outperforms
other traditional unsupervised domain adaptation techniques on
the 2013 Domain Adaptation Challenge. Tu et al. [10] im-
posed adversarial learning on a variational autoencoder to ex-
tract domain-invariant and Gaussian-like speaker features. The
Gaussianized feature vectors meet the Gaussianity requirement
of the PLDA backend, which helps to improve performance.
In [11], adversarial domain adaptation was utilized to reduce
language mismatch. Nidadavolu ef al. [12] investigated the ef-
fectiveness of cycle-consistent generative adversarial networks
(CycleGAN) when a limited amount of target domain data are
available. Their experiment on far-field microphones reveals
that this unsupervised domain adaptation technique can help to
reduce the mismatch between the reverberant speech and the
clean speech.

Many studies in domain adaptation focused on finding a
common feature space for all domains [13, 14]. They assumed
that the speaker representation contains both domain-specific
components and domain-invariant components and attempted
to disentangle the two types of components. In the context of
transfer learning, a negative transfer occurs if the learned com-
mon features contain many domain-specific properties. Domain
separation networks (DSNs) [13] can be used to alleviate this
problem. Through the use of autoencoders and divergence mea-
sures, a DSN can capture the common representation shared by
different domains. The domain-specific representations can be
obtained by finding subspaces that are orthogonal to the com-
mon representation. It has been shown that DSNs can help ex-
tract domain-invariant features in image recognition tasks [13]
and speech recognition tasks [14].

In this work, we propose applying the idea of domain sep-
aration networks for speaker verification. Domain-invariant
speaker embeddings can be obtained by disentangling the
shared properties of the source and target domains from the
domain-specific properties. Similar to DSNs, our proposed net-
work aims to obtain a domain-invariant representation through
a shared encoder and acquire domain-specific representations
through domain-dependent encoders. Instead of forcing the
domain-specific and domain-invariant embeddings to be or-
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thogonal to each other, a discriminator is used to maximize the
differences between the shared properties and domain-specific
properties. It is assumed that the representations are different if
they can always be classified correctly by an optimal discrimi-
nator.

One potential risk of DSNs is that the features produced by
the shared encoder may not contain enough task-related infor-
mation (in our case, the speaker information), especially when
the decoder is flexible enough [15, 16]. Therefore, we further
propose to maximize the mutual information between the in-
put and output of the shared encoder to retain as much speaker
information as possible in the common features (z} and z! in
Fig. 1). Using labelled closed-talking utterances and unlabelled
far-field utterances, the proposed network can be trained to re-
duce the domain mismatch caused by different types of micro-
phones. The resulting network can improve the performance of
speaker verification systems that are trained on near-field mi-
crophone speech but evaluated on far-field microphone speech.

2. Adversarial Separation and Adaptation
Network

2.1. Network Structure and Loss Functions

Let X* = {(x},ylx) }f\]:sl represents a labelled dataset of

N, samples from the source domain D and X* {xf}ivjl
represents an unlabelled dataset of N; samples from the target
domain D;. Apart from applying the original DSN proposed
by Bousmlis ef al. [13], we further propose a variant of DSN
called adversarial separation and adaptation network (ADSAN),
as Fig. 1 shows.

The proposed network comprises three encoders, three dis-
criminators, and a decoder. The shared encoder G}, is trained
adversarially to extract the common features {z},z}} from
both source and target domains. The speaker discriminator is
applied to make the common features to be speaker discrim-
inative. Because only the source data have speaker labels,
the speaker discriminator is trained to minimize the classifi-
cation loss on the source domain. The domain-dependent en-
coders, G and Gy, are trained to extract domain-specific fea-
tures {z3, zﬁ} which are assumed to comprise as much domain-
specific information as possible. The shared decoder R (z.)
is trained to reconstruct the original features (x* or x") from
the concatenation of the domain-specific features and shared
features ((z%,z3) or (z,z})). The reconstruction loss back-
propagated to the source and target encoders can force the ex-
tracted features to maintain the information of the original data.
To ensure that the common features can be disentangled from
the domain-dependent information, the separation discrimina-
tor Dy is applied to discriminate the vectors z%,z},z}, and
z! into three groups: shared, source, and target. The adap-
tation discriminator D,q is utilized to distinguish whether the
shared features are from the source domain or from the tar-
get domain. Meanwhile, the shared encoder tries to produce
shared features that make the adaptation discriminator into be-
lieving that there is no difference between z; and z,. As a re-
sult, domain-invariant and speaker discriminative features can
be extracted from the output of the shared encoder, which are
expected to improve the speaker verification performance on the
target domain.

To achieve the objectives mentioned above, we need to re-
duce the classification error on the source domain by minimiz-
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Figure 1: The architecture of the adversarial separation and
adaptation network.

ing the cross-entropy loss:

K
Liask = Exs~p, [_ Z ys(sli log Dspi (G (Xs))k:| , (D
k=1

where the subscript k£ denotes the k-th output of the speaker
discriminator.

The shared decoder is trained to minimize the mean squared
error:
2
»Crecon - ]Exb‘NDS

X — R ([Gs (x)", G <X5>T}T>

X'~ R ([a ()", Gn (xt)T]T)

The separation discriminator has three outputs, which corre-
spond to g}éél)) = P(shared|z), géfg = P(source|z), and g}SSQ, =
P(target|z), respectively. Therefore, it is trained to minimize

the following cross-entropy loss:
Ly = Exsop, [—10gDsep (Gs(x*)), — logDsep (G (x°)), ]

+ ExtN'Dt [— log Dsep (Gt (xt))3 — logDsep (Gh (xt) ) 1]
3)

where the subscripts 1, 2, and 3 correspond to shared features,
source-domain dependent features, and target-domain depen-
dent features, respectively.

The adaptation discriminator has a sigmoid output to deter-
mine whether the shared features come from the source domain
or target domain. Its loss function is

Lagt = — Exsnp, log Dt (G (x%))

2
2

.(2)

2

+ ]Ext ~Dy

— Eytp, log [1 — Dagt (Gr (x"))] - “4)
The total loss for training the ADSAN is
['ADSAN = L"task + aﬁsep - Bl:udl + 'chrecom (5)

And the minimax optimization can be summarized as:

min max L 0c, 05,04, 0. 6
00,0000 0t berdor 0o ADSAN( cyUs, d:¢9,¢t7 ¢07 ¢r)7 ( )
where 0.,0s,04, ¢s, dt,dc, ¢r are the parameters of the
speaker discriminator, separation discriminator, adaptation dis-
criminator, source encoder, target encoder, shared encoder, and
shared decoder, respectively.



The difference between the DSN and our proposed AD-
SAN is the definition of L. For the DSN, the difference be-
tween domain-specific representations and the common repre-
sentations is determined by orthogonality, i.e.,

DSN
['sep

@)

For ADSAN, on the other hand, the difference is defined by the
classification loss in Eq. 3.

2
= |25 - Zill5 + ||zt - 24| -

2.2. Mutual Information Neural Estimator

As mentioned previously, a flexible decoder may prevent the
shared features {z},,z}, } from retaining task-related informa-
tion. One possible solution is to maximize the mutual informa-
tion between the encoder’s output and the encoder’s input.

Mutual information is a measure of information shared be-
tween random variables. If two variables are independent, the
mutual information is zero and high mutual information indi-
cates high dependency between two random variables. How-
ever, mutual information is tractable only for discrete random
variables or continuous random variables with known proba-
bility distributions. Traditional approaches are non-parametric
[17, 18, 19, 20] or rely on the approximate Gaussianity of data
distributions [21]. These approaches cannot scale well with
sample size or dimension [22]. To address this issue, Belg-
hazi et al. [23] proposed a mutual information neural estima-
tor (MINE) to estimate mutual information. They demonstrated
that MINE can help to improve the training of adversarial net-
works. Therefore, we applied the MINE to estimate the mutual
information.

MINE utilizes a deep neural network with parameters 6 €
O to find a lower bound of the mutual information:

1(X;2) > Te (X, 7),
where Ig (X, Z) is defined as

To (X, 7) = sup e [T5] ~ los (prmz [eTGD .

InEq. 9, Ty : X x Z — R is a function parametrized by
the deep neural network. The expectations in Eq. 9 are esti-
mated using empirical samples from Px 7 and Px ® Pz, where
Px z is the joint distribution and Px ® Pz is the product of the
marginal distributions. Alternatively, it can be done by shuffling
the samples from the joint distribution along the batch axis.
The training of MINE is realized by minimizing the loss

L"MINE (X7 Z) = —I@ (XS', Gh (Xs)) . (10)

By incorporating MINE into the ADSAN, we can calculate the
lower bound of the mutual information between x® and z;, as
well as x* and z!,. Therefore, the shared encoder is trained to
maximize the estimated mutual information:

Is (x,2z) = o1le (x°; Gp (x°)) 40216 (xt; Gh (xt)) , (1D
where
Ie (x°;Gh (x*)) = sug Ep(xs,23) [To (x*,Gh (x%))]
co

®

)
— 1og Ep(s)p(af) [6T9(x e ))]

Te (x'; G (x')) = SUP Eye ot [To (%', G (x1))]
90 ’

(13)
T, xt,G xt
gy [ ]

And the total loss of the adversarial separation and adaptation
network with a mutual information neural estimator is

['ADSAN = L"lask + a['sep - Bl:udl + 'Y[«recon - I(—) (X7 Z) . (14)
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The parameters of components in the networks are trained with
the following minimax optimization:

&,&@ﬁ?%m,o Hg)?X&DSAN (0c, 05,04, ds, Ot Dc, r, 0) .
(15)

3. Experimental Setting

X-vectors extracted from near-field microphone speech and far-
field microphone speech were respectively used as the source
and target domain data to train the ADSAN to produce domain-
invariant features. The domain-invariant features from the
source domain were used to train a PLDA backend. Then the
trained PLDA backend was used to test the domain-invariant
features from the target domain.

3.1. Datasets

The source domain comprises utterances from VoxCelebl [24]
and VoxCeleb2 [25] to conform to the fixed condition of the
VOICES Challenge 2019 [26]. The combination of VoxCelebl,
VoxCeleb2, and their augmented sets were used to train an x-
vector extractor. The augmented sets were obtained using MU-
SAN [27] based on the Kaldi’s receipts. There are ~2.2M utter-
ances spoken by 7,323 speakers from the source domain. The
trained x-vector extractor was then used to extract x-vectors of
the utterances from the target domain.

The target domain comprises utterances from the VOiCES
Challenge 2019, which consists of a development set and an
evaluation set. There are 15,904 utterances from 196 speakers
in the development set, and 11,392 utterances in the evaluation
set.

When training the adaptation networks, the source domain
training data were selected from the original VoxCelebl &
2 without augmentation. Therefore, the utterances from the
source domain can be considered as “clean”, while the utter-
ances from the target domain are “noisy”. The number of ut-
terances per speaker in VoxCelebl & 2 ranges from 20 to 500,
which may cause imbalance training in the speaker discrimina-
tor (Dspk). To address this issue, at least My, and at most Max
utterances with the highest signal-to-noise ratios (SNRs) for
each speaker from the source domain were selected as source
training data. This selection also helps to aggravate the mis-
match between the source and target domains, thereby making
the results more meaningful. Inspired by [12], we estimated
the SNRs using the WADA-SNR algorithm [28]. In our ex-
periments, Mpin is the minimum number of utterances of valid
speakers, which is 21; Mpmax is the median number of utter-
ances of valid speakers, which is 124. For the target domain,
we used the utterances in the development set to adapt the AD-
SAN model and tested the performance on the evaluation set.

3.2. Baseline Systems

In addition to comparing with a baseline system that uses raw
x-vectors, i.e., without any transformations, we also compared
our proposed network with some other networks, including a
domain adaptation neural network (DANN) [29], a DANN with
MINE, and a domain separation network (DSN) [13]. Referring
to Eq. 14 and Eq. 11, if the weight parameters «, v, o1, and o2
are set to zero, then the proposed network becomes a DANN; if
setting o1 and o2 to zero and replacing Ly, (Eq. 3) with Eq. 7,
a DSN can be obtained. These three systems were used as the
baseline systems in this paper, and the configurations of the sub-
networks in the DANN and the DSN are the same as those in



the proposed network.

3.3. Networks without MINE

To exclude the MINE in the training, o1 and o2 in Eq. 11 were
set to 0. The remaining weight parameters for the ADSAN and
the DSN were set as follows: o = 1.0, = 0.1,and v = 1.0;
for DANN, o = v = 01 = 02 = 0. The sub-networks are
fully connected neural networks with two hidden layers, each
with 1024 neurons; the separation discriminator is the excep-
tion, which has one hidden layers and 100 neurons. The learn-
ing rate for all sub-networks is 0.0001 and batch normalization
was applied to the three encoders and the shared decoder. The
activation function in all sub-networks is the leaky ReL.U.

3.4. Networks with MINE

Systems improved upon the DSN and the ADSAN were created
by incorporating a MINE into the loss function. The weight pa-
rameters in the loss function (Eq. 14 and Eq. 11) were set to
a =10, =0.1,7v = 1.0,01 = 0.2, and 02 = 0.4. The
MINE is a deep neural network whose size depends on the size
of data being estimated. In our experiments, the MINE has two
hidden layers, each with 100 neurons. Before training the adap-
tation models, the MINE was pre-trained with the whole train-
ing data from the source domain for 5 epochs. Then, for each
epoch in the main training loop, the adaptation and separation
network (comprising G, Gs, G¢, R, Dk, Daa, and D) and
the MINE were trained consecutively, i.e., when the adaptation
and the separation networks were trained, the MINE is frozen,
and vice versa when the MINE was trained.

Because mutual information is unbounded, it could be in-
finitely large. We applied gradient clipping to prevent infinite
gradient. This strategy can ensure that the networks can be up-
dated normally. The initial learning rate of the MINE is 0.0001,
which decays every 1000 steps at a decay rate of 0.96. The
learning rate for the other sub-networks is 0.00005.

3.5. PLDA Training and Scoring

As a pre-processing step, we projected the raw x-vector to a
200-dimensional space by linear discriminant analysis followed
by length normalization. Then, we used the pre-processed x-
vectors derived from Voxcelebl & 2 (with and without data aug-
mentation) to train the PLDA models of our baseline systems
(the first row of Tables 1 and 2). We performed the same pre-
processing on the transformed x-vectors obtained by various
domain adaptation networks (DANN, DSN, and ADSAN) to
train other sets of PLDA models. For scoring, the pre-processed
x-vectors and the network-transformed pre-processed x-vectors
were derived from VOICES data and were fed to the respec-
tive PLDA models. When computing the PLDA scores, the x-
vectors were centered by using the mean x-vector of the enroll-
ment data in the development set of VOiCES.

4. Results and Discussions

For fair comparisons, the same preprocessing was applied to
all the systems. In addition, the label information of the target
domain data was not used during the entire training process.
Table 1 and Table 2 show the performance on the develop-
ment set and the evaluation set obtained by different systems,
respectively. It can be observed that the domain adaptation net-
works are more effective for the evaluation set in which the ut-
terances are more noisy and are subject to more severe reverber-
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Table 1: Performance on the VOICES development set using
Voxceleb data (with or without augmentation) for training the
PLDA.

System VoxCelebl&2 VoxCelebl&2+aug

EER(%) | minDCF | EER(%) | minDCF

X-vector 3.07 0.3595 3.00 0.3342
DANN 3.08 0.4519 3.34 0.4502
DANN+MINE 4.87 0.5301 4.88 0.5291
DSN 3.15 0.3886 3.21 0.3831
DSN+MINE 3.03 0.4194 3.15 0.4155
ADSAN 2.98 0.4545 3.00 0.4377
ADSAN+MINE 291 0.3789 2.90 0.3700

Table 2: Performance on the VOICES evaluation set using
Voxceleb data (with or without augmentation) for training the
PLDA.

System VoxCelebl&2 VoxCelebl&2+aug

EER(%) | minDCF | EER(%) | minDCF

X-vector 9.03 0.8157 7.36 0.6125
DANN 7.37 0.7291 6.89 0.6794
DANN-+MINE 10.03 0.8163 9.4 0.7908
DSN 7.24 0.6892 6.7 0.6307
DSN+MINE 6.76 0.6588 6.51 0.6309
ADSAN 7.16 0.7939 6.58 0.7021
ADSAN+MINE 6.98 0.5934 6.76 0.5989

ation. The DANN with MINE achieves the worst performance,
which indicates a negative transfer. Compared with the DANN,
the DSN and ADSAN can achieve better results, and both the
EER and minDCF are further reduced when the MINE was in-
corporated into the systems. When training the MINE in the
DANN, the mutual-information loss always converges to a very
small value (closed to 0). This indicates that the MINE cannot
play a useful role in the DANN.

For the evaluation set, the DSN with MINE achieves the
lowest EER while the ADSAN with MINE achieves the lowest
minDCEF. Different from the DSN, the ADSAN applies a mod-
erate constraint on the difference between domain-specific com-
ponents and domain-shared components (Eq. 3 vs. Eq. 7). In-
vestigations via t-SNE plots (not shown) produced by the DSN-
and ADSAN-transformed vectors suggest that the distributions
of the ADSAN-transformed vectors are closer to the distribu-
tions of the original vectors; they also exhibit a smaller distance
between the source domain and the target domain. These results
reveal that the proposed ADSAN can produce domain-invariant
and speaker discriminative representations, which are beneficial
for speaker verification.

5. Conclusions

In this paper, we propose an adversarial separation and adapta-
tion network motivated by the domain separation network. We
also propose to incorporate a mutual information neural estima-
tor into these two domain separation networks. The proposed
approaches can enforce the shared encoder to disentangle the
domain-invariant features from the domain-specific properties.
Our experiments on the VOiCES corpus show that the proposed
approaches can outperform the DANN. And training the net-
works with the consideration of mutual information can further
increase the speaker information in the extracted features.
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