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Abstract
In this paper, we study a novel technique that exploits the

interaction between speaker traits and linguistic content to im-
prove both speaker verification and utterance verification per-
formance. We implement an idea of speaker-utterance dual at-
tention (SUDA) in a unified neural network. The dual attention
refers to an attention mechanism for the two tasks of speaker
and utterance verification. The proposed SUDA features an at-
tention mask mechanism to learn the interaction between the
speaker and utterance information streams. This helps to focus
only on the required information for respective task by masking
the irrelevant counterparts. The studies conducted on RSR2015
corpus confirm that the proposed SUDA outperforms the frame-
work without attention mask as well as several competitive sys-
tems for both speaker and utterance verification.

Index Terms: text-dependent speaker verification, utterance
verification, attention, masking, RSR2015

1. Introduction
Speaker verification (SV) aims to verify the claimed identity of
a person using given speech [1]. Its implementation is broadly
categorized into text-dependent and text-independent based on
the spoken contents used for enrollment and testing [1]. The for-
mer deals with use of fixed short phases, while the latter doesn’t
put any constraints on the speech content. A text-independent
system generally requires more training and test data [2,3] than
a text-dependent one [4, 5] to maintain the same level of accu-
racy. Therefore, text-dependent system is preferable in many
real-world applications where user’s cooperation is possible.

The research on text-dependent SV has evolved a lot from
traditional dynamic time warping based template matching
method to deep learning recently. For benchmarking of technol-
ogy process, standard speech corpora like RSR2015 and Red-
Dots are designed [6,7]. It is found that the modeling techniques
such as hierarchical multi-layer acoustic model (HiLAM) [6],
unsupervised hidden Markov model (HMM)-universal back-
ground model (UBM) [8] i-vector/HMM [9] and j-vector [10]
benefit from temporal information in speech. Further, deep
learning techniques have greatly improved the ability of speaker
characterization [11–16].

In human SV, we would like to have test samples as parallel
to the unknown as possible to reduce the variability to a min-
imum due to language content. Text-dependent SV allows us
to do just like that. Various studies show text-dependent SV is
considered for performing two tasks, an SV as the main task,
and an utterance verification as the subtask, where the two tasks
are optimized separately or jointly in order to improve the SV
objective. For example, the phonetic posteriorgrams derived
using Gaussian mixture model (GMM) and deep neural net-
work (DNN) frameworks are utilized to capture lexical infor-
mation for text-dependent SV [17, 18]. One shows that DNN

based speaker embedding benefits from lexical content infor-
mation [19], others suggest that lexical information can be used
in different ways to compensate the SV scores for performance
gains [20–22].

Prior studies have underscored the importance of content
modeling in text-dependent SV. While utterance verification has
been well studied as part of speech recognition [23, 24], it has
not been given sufficient attention in the context of SV. Some
consider text-dependent SV as a combination of two indepen-
dent systems, namely SV and utterance verification [25, 26]. In
our previous work [27], text-dependent SV is formulated in a
unified speaker-utterance verification (SUV) system as a multi-
task learning implementation. This is inspired by human cog-
nitive process where we interpret and decode speaker traits and
linguistic content in a corroborative manner [28, 29]. For ex-
ample, by paying special attention to particular sounds while
knowing the linguistic content information, we verify the voice
of a speaker; on the other hand, if we are familiar with a speaker,
we tend to recognize his/her voice in a better way.

In the unified SUV system, we used a shared long short
term memory (LSTM) network and two independent LSTM
output layers, one for speaker identity and another for utter-
ance identity [27]. While the previously proposed unified SUV
framework is effective, the interaction between the two output
layers is not explored. We believe that both speaker and utter-
ance verification can benefit from each other by exploring the
temporal interaction between them. This is also motivated by
successful explorations in text-dependent SV that suggest the
benefit of compensating lexical information [20–22]. Further,
various attention models [30–32] project their possibility to fo-
cus on specific compensation or masking related to each task.

In this work, we propose an speaker-utterance dual atten-
tion, SUDA in short for performing both speaker and utterance
verification. The attention mechanism for compensating irrel-
evant information for both tasks is derived by using masking
operation. The masking for attention is estimated frame-by-
frame, the attention mechanism establishes the temporal asso-
ciation between the speaker trait stream and the utterance con-
tent stream of LSTM output. In addition, we note that, as the
attention mechanism is applied to both the branches (speaker
and utterance) in the framework, it is referred to as dual at-
tention. The studies in this work are conducted on RSR2015
corpus [6]. The contribution of this work lies in the use of a
speaker-utterance dual attention in a single framework for per-
forming both speaker and utterance verification.

The rest of the work is organized as follows. Section 2
describes the proposed speaker-utterance dual attention mech-
anism for speaker and utterance verification. The experiments
are detailed in Section 3, followed by reporting of their results
and analysis in Section 4. The paper is finally concluded in
Section 5.
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Figure 1: Block diagram of proposed SUDA for speaker and utterance verification. It consists of a shared LSTM, two LSTM output layer,
which interact each other through the attention mask network. The NF and NF’ are number of frames before and after convolution.

2. Speaker-Utterance Dual Attention
This section describes the proposed SUDA for speaker and ut-
terance verification. As shown in Figure 1, the features ex-
tracted from raw audio data are fed into the LSTM based re-
current network to characterize the temporal dynamics. This
system is an extension to our earlier work of unified SUV frame-
work [27].

As presented in our earlier study [27], the first shared layer
is common for speaker and utterance verification branches.
Then, the hidden representation from the first shared layer is
passed to the next two LSTM networks that focus on extracting
valid information for each of the two sub-tasks, namely, speaker
and utterance verification. We now discuss the improvisations
introduced in this work using dual attention by masking.

2.1. Related Studies

Masking has been found to be effective to separate multiple
sound sources from an audio mixture [33]. A more recent ap-
proach regards speech separation problem as a supervised learn-
ing that aims to discriminate different patterns such as, speech,
speakers, and background noise, which are learned from train-
ing data [33]. Masking operation can be viewed as an attention
mechanism, where the every single features from one branch
are masked to attend the specific features from another branch.
Attention based models have been applied successfully to var-
ious tasks. In computer vision research, there are three main
strategies for attention: spatial attention, channel attention and
mixed attention [34–36]. The spatial attention is used to em-
phasis the area that one is interested, while the channel atten-
tion is mainly for features recalibration in convoluational neu-
ral networks, such as the ‘Squeeze-and-Excitation’ block pro-
posed in [35]. Again, the authors of [30] proposed an end-to-
end framework with an attention model to combine the frame-
level features, which acts as an alignment operation for SV stud-
ies. The attention model designed as a part of the speaker em-
bedding network, is used to calculate the weighted mean of the
frame-level feature maps to derive speaker embedding with a
better discriminative speaker characteristics [31, 32].

2.2. Attention Mask

In the proposed SUDA, the convolution layers are used to ex-
tract the feature maps from the hidden representation obtained
after LSTM as shown in Figure 1. It has the objective to map the
hidden representation to higher dimensional space to compen-
sate the mutual information by attention masks. The dynamic
masks can learn the information from feature maps obtained
from the convolutional layers. We use sigmoid non-linearity
to limit the activation from the mask. The dynamic masking
is performed by learning the parameters from feature maps and
the activating sigmoid function [37]. The masking is formulated
as:

masks = 1− Sigmoid(fmu) (1)

masku = 1− Sigmoid(fms) (2)

where the fmu and fms represent the feature maps from utter-
ance verification and SV branch, respectively, while the masku

and masks indicate the dynamic masks for the corresponding
branch. These masks are then multiplied by the corresponding
stream of feature maps to suppress irrelevant information in the
respective stream of feature maps. The parameters in the masks
are not fixed during the training or inference phase. They are
derived according to the input audio data.

The operations performed so far produce the framewise rep-
resentations. In order to pool the information across the utter-
ance, global average pooling (GAP) is performed. Next, the
fully connected (FC) layers are used to perform both speaker
and utterance verification tasks.

In this work, the attention mask is applied on the every
feature map through sigmoid operation than the conventional
softmax operation. Further, the weights of our attention masks
are obtained from the branch of another task. We note that the
weights of the attention mask are tuned for different utterances
and speaker-specific information.

3. Experiments
We now discuss the database and experimental setup for the
studies in the following subsections.
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Table 1: Performance in EER (%) for proposed SUDA in comparison to existing systems on RSR2015 Part I corpus.

System
Male Female

Development Evaluation Development Evaluation
TW IC IW TW IC IW TW IC IW TW IC IW

i-vector [6] 2.870 5.950 0.740 1.950 4.030 0.320 3.050 7.870 0.940 1.910 6.610 0.750
HiLAM [6] 1.660 3.690 0.490 0.820 2.470 0.190 1.770 3.240 0.450 0.610 2.960 0.140

Joint-spk-utt [27] 5.565 1.981 1.792 5.125 2.079 0.888 5.179 1.699 0.831 3.110 1.453 0.499
Unified SUV [27] 0.470 1.590 0.101 0.293 1.757 0.039 1.176 4.323 0.178 0.375 2.009 0.068

Utt-comp [22] - 1.460 - - 0.960 - - 1.640 - - 0.730 -
Utt-comp-uf [22] - 1.460 - - 0.960 - - 1.460 - - 0.720 -

mod-SUV 0.202 0.952 0.034 0.107 1.093 0.020 0.475 2.055 0.071 0.182 1.373 0.034
Proposed: SUDA 0.202 0.728 0.022 0.068 0.722 0.010 0.297 1.449 0.024 0.125 0.863 0.023

3.1. Database

The RSR2015 corpus is used for the studies in this work [6].
It contains 300 speakers data from 143 female and 157 male
speakers. Further, the corpus is divided into three different parts
based on the nature of the fixed phrases. The Part I includes 30
fixed phrase utterances of 3-4 seconds duration, whereas the
Part II has 30 fixed short commands of 1-2 seconds duration.
Similarly, the Part III contains the random digit based five or
ten digit sequences. Again, there are 9 sessions for each phrase
from all the speakers. Out of those, the first, fourth and seventh
sessions are used for speaker enrollment and the remaining for
testing as per the RSR2015 evaluation protocol [6].

The RSR2015 corpus has three subsets, which are back-
ground, development and evaluation set to evaluate the sys-
tem performance [6]. The test trials are grouped under four
categories based on the test speaker and phrase labels, which
are Target Correct (TC), Impostor Correct (IC), Target Wrong
(TW) and Impostor Wrong (IW). They further constitute three
test conditions, where each of those conditions consider TC as
target trials and the remaining three categories as non-target tri-
als, respectively. The performance is reported in terms of equal
error rate (EER). In this work, we consider Part I and Part II
of RSR2015 as they are suitable for both speaker and utterance
verification.

3.2. Experimental Setup

The speech utterances are processed with 20 ms frame size and
10 ms shift to extract 60-dimensional (20-base + 20-∆ + 20-
∆∆) mel frequency cepstral coefficient (MFCC) features us-
ing KALDI1 toolkit. The extracted features are normalized by
cepstral mean and variance normalization using utterance level
mean and variance statistics.

In addition, we apply the feature level triplet loss to further
increase the intra-class distance and reduce inter-class distance.
It is applied on the 512-dimensional feature vector at the step
after 1D global average pooling as shown in Figure 1. We cal-
culate triplet loss in both the branches, i.e., SV and utterance
verification. In addition, the negative and positive samples in
the training batch for each iteration is searched. The batch size
of each iteration is set to be 128 for all the experiments and these
samples are chosen randomly. The loss of proposed framework
is calculated by following formula:

Ltotal = LTspk + LTutt + Lspk + Lutt (3)

1http://kaldi-asr.org/
2https://pytorch.org/

where the LTspk and LTutt are triplet loss, while Lspk and
Lutt are negative log likelihood loss. The subscripts spk and
utt represent the SV and utterance verification branches in
SUDA, respectively.

The learning rate, optimizer, LSTM’s hidden layer and
scoring follow the same configurations as that in our previous
work of unified SUV [27]. We adopt PyTorch2 toolkit for the
implementation. We fixed seeds empirically to 2020 in our stud-
ies. In contrast to the previous unified SUV, we add 1D convolu-
tion layer to the network, where kernel size of convolution layer
is 5, while the padding and the stride are 0 and 1, respectively.
The activation function between convolutional layers is para-
metric rectified linear unit (PReLU) [38]. Further, we note that
in order to observe the impact of attention mask, we also con-
duct the experiments without attention based on masking oper-
ation block. We refer to the system with this setup as mod-SUV
for comparing to previous unified SUV [27] in this work.

4. Results and Discussions
We consider HiLAM and i-vectors as two basic common refer-
ence systems for the studies [6]. Further, as the work advocates
on compensation network, we consider joint speaker utterance
(joint-spk-utt) [41] and utterance compensation (utt-comp) [22]
frameworks for comparison. We note that joint speaker utter-
ance models speaker and utterance information jointly [41],
whereas the utterance compensation framework compensates
the utterance information after jointly modeling speaker and ut-
terance characteristics [22]. Further, the utterance compensa-
tion framework has another variant with utterance factor (utt-
comp-uf). We note that all these works used for comparison
targets for only SV studies. The unified SUV proposed in our
previous work for performing both speaker and utterance veri-
fication is also used as reference system [27].

Table 1 shows the performance comparison of our proposed
SUDA to the systems discussed above on Part I of RSR2015
corpus. The performance of systems compared are quoted from
the previously published results. We find that HiLAM system
performs better than the i-vectors systems due to use of tem-
poral knowledge. Further, the joint speaker utterance model
outperforms HiLAM system for IC test trial condition, while it
performs poorly in TW and IW trial conditions related to utter-
ance verification. Compared to these two systems, our previous
work, unified SUV takes advantage of LSTM to capture tem-
poral dynamics, greatly reduces the error rate of TW and IW
trial conditions. In the utterance compensation system, we ob-
serve compensating utterance information leads to a good per-
formance in IC trial condition that further improves in addition
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Table 2: Performance in EER (%) for proposed SUDA in comparison to existing systems on RSR2015 Part II corpus.

System
Male Female

Development Evaluation Development Evaluation
TW IC IW TW IC IW TW IC IW TW IC IW

i-vector [6] 5.410 13.750 2.500 4.390 11.260 1.810 6.940 12.730 2.860 5.160 15.270 3.050
HiLAM [6] 6.140 10.580 3.030 4.420 8.380 1.710 4.620 6.660 1.290 3.710 7.950 1.450
Joint-spk-utt 10.804 4.096 2.715 9.929 4.190 2.286 10.220 3.482 2.179 7.797 3.382 1.816

Utt-comp [22] - 4.160 - - 3.610 - - 4.030 - - 2.850 -
Utt-comp-uf [22] - 4.160 - - 3.610 - - 3.860 - - 2.790 -

mod-SUV 1.394 3.757 0.279 1.015 3.591 0.176 1.833 4.862 0.272 0.851 3.563 0.102
Proposed: SUDA 1.382 2.698 0.245 0.878 2.400 0.127 1.360 3.359 0.296 0.624 2.020 0.057

Table 3: Performance in EER (%) of different systems on the
evaluation set of RSR2015 Part I. Here, j-vector: j-vector with
cosine similarity, Joint Bayesian: j-vector system with joint
Bayesian model, J2: joint training of j-vector extractor and
joint Bayesian and the Siamese network for j-vector extractor
and the joint Bayesian as a back-end, J3: joint training of j-
vector extractor and joint Bayesian, and use the Siamese net-
work output for verification, RACNN-LSTM: raw audio convo-
lutional neural network with LSTM, i-vector + s-vector: the sys-
tem concatenating i-vector and s-vector directly, i-s-vector: the
system concatenating the last-step hidden output of s-vector and
corresponding i-vector (s-vector extracted either from LSTM or
Bidirectional LSTM (BLSTM)).

System TW IC IW

j-vector [12] 3.14 7.86 0.95
Joint Bayesian [15] 0.03 3.61 0.02

J2 [15] 0.02 2.81 0.02
J3 [15] 0.02 2.42 0.02

RACNN-LSTM [39] - 3.63 -
Unified SUV [27] 0.46 2.41 0.06

i-vector + s-vector [40] 0.28 1.13 0.03
i-s-vector (LSTM) [40] 0.17 1.98 0.03

i-s-vector (BLSTM) [40] 0.11 1.72 0.02
mod-SUV 0.15 1.14 0.02

Proposed: SUDA 0.13 0.62 0.01

of the utterance factor [22]. However, it did not explore on com-
pensating speaker information for utterance verification unlike
this paper, hence, the results of TW and IW trials are not inves-
tigated in [22].

In this work, as mentioned in Section 3.2, mod-SUV is a
modified framework of unified SUV. We can observe from Table
1 that mod-SUV has significantly improved SV performance
in all three test trial conditions over the existing unified SUV
framework. Further, our proposed SUDA, which focuses on the
required speaker and utterance information by imposing dual
attention, outperforms most of the other systems for all three
test trials conditions except, IC test trial condition of evaluation
female set.

Table 2 reports the performance of various systems on Part
II of RSR2015 database. The performance trend of various
systems remains similar to that observed in case of Part I of
RSR2015 database. The proposed SUDA again outperforms
all other systems, showing effectiveness of attention based dual
compensation in various trial conditions.

We now compare our proposed SUDA framework with
other deep learning systems. We combine both male and fe-

Table 4: Performance in EER (%) for SV and utterance verifi-
cation (UV) on Part I of RSR2015 evaluation set.

System Male Female
SV UV SV UV

Unified SUV [27] 1.796 0.021 1.918 0.011
mod-SUV 1.132 0.010 1.362 0.011

Proposed: SUDA 0.741 0.005 0.840 0.011

male data of RSR2015 Part I to match with the evaluation pro-
tocol followed in [12, 15, 39, 40] for comparison with other re-
search studies. We observe from Table 3 that the mod-SUV has
a comparable performance to other systems in the IC trial con-
dition. Further, with the use of attention masks, the proposed
SUDA achieves a significant improvement on the IC trial con-
dition, and at the same time improves performance for IW and
TW trial conditions.

Finally, as discussed in our earlier work [27], we can ad-
just and tune the scores from speaker and utterance verification
branch to show a security trade-off during scoring. The studies
related to this reported in Table 4 show that the proposed SUDA
outperforms previous unified SUV and the current mod-SUV,
that highlights the gain provided by dual attention mechanism.

5. Conclusions
This work proposes a novel speaker-utterance dual attention
(SUDA) mechanism for speaker and utterance verification. We
used LSTM based models with two branches in a unified frame-
work that consider attention masks for temporal interaction be-
tween speaker trait stream and utterance content stream that
helps to suppress the irrelevant information for both tasks. The
studies conducted on RSR2015 corpus reveal the importance of
the proposed SUDA in comparison to existing approaches to
work effectively for both speaker and utterance verification si-
multaneously. The framework also leverages a user for using
it according to the security need of the intended application.
The future work will focus on extending attention masking for
prompted digit based SV.
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