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Abstract
Disfluencies are prevalent in spontaneous speech, as shown in
many studies of adult speech. Less is understood about chil-
dren’s speech, especially in pre-school children who are still
developing their language skills. We present a novel dataset
with annotated disfluencies of spontaneous explanations from
26 children (ages 5–8), interviewed twice over a year-long pe-
riod. Our preliminary analysis reveals significant differences
between children’s speech in our corpus and adult spontaneous
speech from two corpora (Switchboard and CallHome). Chil-
dren have higher disfluency and filler rates, tend to use nasal
filled pauses more frequently, and on average exhibit longer
reparandums than repairs, in contrast to adult speakers. De-
spite the differences, an automatic disfluency detection system
trained on adult (Switchboard) speech transcripts performs rea-
sonably well on children’s speech, achieving an F1 score that
is 10% higher than the score on an adult out-of-domain dataset
(CallHome).
Index Terms: children’s speech, disfluency, acoustic analysis,
fundamental frequency

1. Introduction
Disfluencies, including filled pauses, repetitions and self-
corrections, are common in spontaneous speech. As speech-
based communication with devices and virtual agents becomes
more natural, it will be increasingly important for conversa-
tional agents to detect and use disfluencies in understanding
users. While there have been many studies of disfluencies
in adult spontaneous speech, including extensive work on au-
tomatic disfluency detection, most studies of children speech
have focused on clinical applications. Understanding child
speech disfluency is important in evaluation of language de-
velopment. Analyzing speech characteristics in children can
help distinguish disfluencies that are natural in typical devel-
opment vs. signs of autism spectrum disorder [1], attention-
deficit/hyperactivity disorder [2], or language disorders [3],
most commonly stuttering [4, 5, 6].

In addition, it can be useful to detect disfluencies in non-
clinical contexts. For example, automatic detection of disflu-
encies in read speech is useful for assessing a child’s reading
ability [7]. Social companion robots show promise as both
assessment tools and educational partners for young children
[8, 9, 10]. In this context, or for children talking to virtual agents
more generally, disfluency detection is needed to facilitate au-
tomatic speech understanding and assessing child engagement.

Few corpora of spontaneous children’s speech are available,
and even fewer exist with annotated disfluencies. There is some
data for read speech, e.g. [7, 11], and a corpus of child-computer
interaction [12]. The work in this paper contributes a novel
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dataset of transcripts of human-directed spontaneous speech
from children with disfluency annotations,1 together with dis-
tributional analyses and automatic detection results.

2. Corpus and Annotation Description
The dataset developed for this study is based on a set of inter-
views between an adult and a child, using a protocol described
in [13, 14]. The data collected is part of a larger human-robot
interaction (HRI) study evaluating the effectiveness of social
robots in classroom settings [10, 15]. The robotic medium is
JIBO, a social robot originally developed to be a home personal
assistant [16]. JIBO was designed to act as a learning compan-
ion, serving as the child’s peer with a friendly child-like voice.
We chose a subset of interactions with a human teacher in order
to compare results to adult conversational data, and because our
goal is to support more human-oriented interactions.

2.1. Data collection

A microphone was placed between the teacher and the child,
at a 45◦ angle approximately 30-50 cm away from both partic-
ipants. 26 children (15 female and 11 male) were each inter-
viewed twice, approximately one year apart, ages 4.8 to 7 in
the first interview. Overall the dataset consisted of 7 hours of
recorded and transcribed interviews, reduced to approximately
1.26 hours of child speech. Each interview consisted of a series
of questions designed to elicit spontaneous explanations from
the children through a narrative task.

During the first interview, the children were prompted re-
garding two tasks: brushing their teeth (‘teeth 1’) and mixing
paint into colors (‘colors’). They were asked: 1) how they ac-
complished this task, 2) why they should perform this task, 3)
how to explain the task to a friend, and 4) why that friend should
perform the given task the way they do. During the second in-
terview, the children were prompted with three tasks. First, they
were presented a series of four photos of different animals and
asked to identify which animal was the odd one out and explain
why (‘animals’). Second, the teeth-brushing task was repeated
(‘teeth 2’). Third, the children were presented with an unknown
number of cubes that could be either attached to one another or
split apart and then asked to identify how many cubes they had
been given (‘blocks’). The same series of questions (1–4) were
then asked about this new counting task.

2.2. Annotation Process

The annotation framework builds on standards developed for
adult speech used on the Switchboard corpus [17], including
disfluencies, indication of fillers, and segmentation boundaries.
We incorporate minor modifications and add markers for child

1For privacy reasons, only annotated transcripts are made available:
www.seas.ucla.edu/spapl/shareware.html
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hesitations and partner backchannels. As in other spontaneous
speech corpora, some segments of speech are difficult to under-
stand and are labeled as ‘[inaudible]’. The conventions were
chosen by three annotators, after multiple sessions of listening
to and annotating seven audio files. Figure 1 provides an exam-
ple child dialog associated with a protocol used for all children
in both sessions, illustrating most of the annotated phenomena.

Disfluencies included repetitions, restarts, and self-repairs,
which reflect production/planning issues. The disfluency no-
tation chosen builds on the annotation standard originally out-
lined in [18]. Specifically, a disfluency consists of a reparandum
followed by an interruption point ’+’, an optional interregnum
’{xx}’, and then the repair, if any. A few simple examples of
adult disfluencies are given below:

[was it + {I mean} did you] put...
[I just + I] enjoy working...
[By + ] it was attached to...

We use a variant that omits the nested bracketing structure for
repetition disfluencies proposed in [19], e.g., using “[he + he run
+ he run]” as opposed to “[he + [he run + he run]].” Disfluencies
sometimes involve word fragments, which are transcribed with
a final hyphen, as in “[b- + b- + but]” or “[he w- + he put].”

Fillers are words that are used to hold the floor while one
is thinking and can be removed without affecting the meaning
of a sentence. Filler words or phrases do not include discourse
markers such as ‘so’ or ‘well’ or agreement backchannels such
as ‘yeah’ or ‘right.’ In Switchboard annotations, fillers mainly
include the filled pauses ‘uh’ and ‘um.’ For the child disfluency
corpus, we included words such as ‘like’ as fillers. This may re-
flect a difference in conventions, or simply a difference in lan-
guage use, since the Switchboard data was collected roughly
30 years ago. Fillers are indicated with ‘{F xx}’ notation. In
Switchboard, fillers are typically associated with the interreg-
num in a disfluency. In the child data, if the pause occurs after
the filler, we associate the filler with the reparandum.

Segmentation boundaries include turn boundaries (indi-
cated by ‘//’) and sentence-like unit (SU) boundaries (‘/’). Turn
boundaries separate full speaker turns. SU boundaries indicate
semantically coherent units within a speaker’s turn, allowing
for the fact that spontaneous speech does not always result in
grammatical sentences. Each SU conveys a complete meaning
or speech act, which might be a simple noun or verb phrase in
answer to a question. In spontaneous speech, clauses that start
with a conjunction are often considered a single SU.

Another phenomenon that was frequent in the child data
was hesitation indicated with an unfilled pause and/or dura-
tion lengthening that was not perceived as fluent. These word
boundaries, indicated with ‘{H},’ are not used for pauses or
prolongations that occur at SU boundaries, interruption points,
or words that are lengthened for emphasis. These annotations
are included in the corpus, but excluded from analysis as the
inter-annotator agreement was not high (see 2.3).

The instructor speech was not transcribed in our dataset,
since it primarily followed a prescribed script. However, we de-
cided to annotate backchannels, referred to as partner backchan-
nels (denoted ‘{PBC}’), since these tended to occur at points of
hesitation and SU boundaries associated with child uncertainty.
They represent encouragement for the child to continue.

Annotations were made in all lower case and without punc-
tuation. Some speech patterns were not captured by the annota-
tion, such as tongue clicking, nasal speech, exasperated replies,
whispered replies, and the replacement of fricatives with stops.

A: Tell me how you clean your teeth.
C: by brushing {H} your tooth {PBC} //
A: Okay. Anything else you can tell me about how you

clean your teeth?
C: [you + you] get a brush [and then s- + and then put] it

and [some + some] [like + like] just squeeze it / and
[then + then] you put a little bit of water on it {PBC} /
and then you brush your teeth / and then you spit it out /
and then you get more water like this / and then you
drink it / and then you spit it out again //

A: Okay. Now tell me why you clean your teeth.
C: [because i +] it’s very important / [so i + so i] can

eat bubblegum [all + all] the time //
A: Okay, anything else you can tell me about why you

clean your teeth?
C: {F mh} [because + because] so you can’t have germs

anymore / so you can eat bubblegums //

Figure 1: Example dialog. A=adult; C=child

2.3. Inter-Annotator Agreement

Inter-annotator agreement was measured between two annota-
tors over 15 files (3,700 tokens). For boundary agreement, an-
notations were first compared for 5 categories: None, {H},
+, /, and //. Cohen’s kappa for these 5 categories was 0.71.
The agreement for unfilled pauses was particularly low: the
two annotators both identified the unfilled pause in only 32 to-
kens, but disagreed on the presence/absence of {H} for 112 to-
kens. Therefore, unfilled pauses were excluded from later anal-
yses. With the remaining 4 boundary categories, inter-annotator
agreement was reasonably high with Cohen’s kappa of 0.77.
For disfluency annotations, agreement was compared based on
binary labels of whether or not a token was in a reparandum.
Cohen’s kappa for disfluency annotation was very high at 0.82,
indicating a high reliability for identification of disfluencies.

3. Child Speech Data Analysis
3.1. Transcription Analysis

Table 1 presents disfluency statistics in our dataset. Statistical
significance for rate differences was assessed using the Poisson
e-test [20]; a t-test was used for length differences. Overall dis-
fluency and filler rate is relatively high at 15.2%, compared to
results reported for adult speech (see Section 4.2). It is also high
relative to the average of 7.4% reported in [12] for a collection
of speech from 10 children ages 4-6 recorded in dialogs with
a computer agent. This is consistent with the observation that
adult disfluency rates are higher in human-human conversations
compared to human-computer conversations.

Comparing between genders, notable differences are: fe-
male children tend to be less disfluent (8.5% vs. 12.1%) and use
fewer fragmented words (1.2% vs. 2.5%), but use fillers more
frequently (5.4% vs. 4.5%) than male children. Higher disflu-
ency rates in male children is consistent with findings in [21, 5]
but is in contrast to a study on Switchboard adult speech [22],
where it was observed that men had higher filler rates, hypothe-
sized as a strategy for floor-holding.

Figure 2 shows disfluency and filler rates by child for the
two sessions, ordered by first session age. Averaging over the
two sessions, the child disfluency rate ranges from 2.3% to
20.6% (µ = 9.0, σ = 4.9), and the filler rate ranges from 0.9%
to 10.8% (µ = 5.2, σ = 2.7). For comparison, the rates for
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Table 1: Disfluency statistics in the child speech corpus: over-
all and comparing between genders. Bold denotes statistically
significant difference between genders at p < 0.05.

overall female (2x15) male (2x11)

# tokens 13,568 7436 6132
# turns 2,119 1201 918
avg. SU length 6.4. 6.2 6.7
disf. rate 10.1% 8.5% 12.1%
filler rate 5.0% 5.4% 4.5%
% filler in disf. 12.1% 13.3% 10.2%
‘uh’ rate 0.5% 0.6% 0.5%
% ‘uh’ in disf. 16.2% 13.3% 20.7%
‘um’ rate 2.3% 2.6% 1.9%
% ‘um’ in disf. 14.4% 14.4% 14.4%
frag. rate 1.8% 1.2% 2.5%

disfluencies and fillers together for the 10 children in [12] range
from 3.3% to 13.6%.

Comparing between two interview sessions, overall there
was no significant difference in disfluency rate (9.7% vs 10.4%)
but the higher filler rate in the later session (6.0% vs. 3.6%) was
statistically significant (p < 0.05). Comparing across tasks (Ta-
ble 2), the task that stood out was the odd-one-out animal task,
where children responded with significantly shorter segments
and higher filler rate than in other tasks. This result might be
due to the more challenging nature of the ‘animals’ task.

The teeth-brushing task was common between the two ses-
sions. There was a surprising difference in both disfluency and
filler rates, with the second session again having higher rates.
The increase is observed for 17 of the 26 speakers and is signifi-
cant in aggregate (p < 0.05). Though unclear, one hypothesis is
that the teeth-brushing task in the first interview was conducted
first, while in the second interview it was after the ‘animals’
task, priming the children at a higher cognitive load.

Table 2: Disfluency statistics across different tasks. Bold de-
notes statistically significant difference between the group and
the rest of the groups at p < 0.05.

teeth 1 teeth 2 colors animals blocks

# tokens 2617 3496 2870 1179 3406
# turns 416 532 453 206 512
SU len. 6.3 6.6 6.3 5.7 6.7
disf. rate 8.9% 11.3 10.4% 8.2% 10.2%
filler rate 3.2% 5.7% 3.9% 7.5% 5.8%
frag. rate 2.0% 1.8% 2.2% 1.2% 1.6%

3.2. Acoustic Analysis

Automatic word-level forced alignment was performed using
a time delay neural network hidden Markov model automatic
speech recognition system with approximately 6000 senones
[23]. The system was implemented using Kaldi [24] and trained
on approximately 90 hours of child speech in various class-
room settings from the TBALL Children’s Speech Corpus [25].
Due to the difficulty of child speech forced alignment, we com-
pared human-annotated time alignments of 3 conversations of
the teeth-brushing task against the automatic forced alignment
system. For these conversations, the differences in the marked

Figure 2: Disfluency and filler rates by speaker, for both ses-
sions. Speakers are sorted by age at the time of the first session
(from low to high, left to right).

word boundaries between the human and automatically gener-
ated alignments differed by an overall average of 300ms, with
the largest errors contributed by words at turn boundaries and
interfering loud background noise. Excluding these few prob-
lematic tokens, the average difference between human and au-
tomatic alignments was 95ms.

To extract the fundamental frequencies (f0) of child speech,
several pitch detection algorithms were evaluated, including
BaNa pitch estimation [26], multi-band summary correlogram
(MBSC)-based pitch estimation [27], and sawtooth waveform
inspired pitch estimation (SWIPE) [28]. After inspection, we
observed no significant difference between the three algorithms
in both pitch estimation and voiced frame detection across 3
conversations. For this study, we used MBSC-based f0 estima-
tion. We assessed the MBSC-based f0 by inspecting 150 frames
of voiced speech across the 3 conversations, and the relative
difference between the human annotated and automatically es-
timated f0 was less than 6.7%.

Table 3: Average mean and standard deviation of f0 (Hz) for
each token category, separated by age.

Word Category [4.8-6) [6-7) [7-8)

filler 241±15 238±18 223±13
filler@boundary 249±14 249±17 218±13
fluent 250±9 245±10 227±9
boundary 249±21 246±21 228±18
interruption point 251±16 243±10 225±11
within disf. 251±10 249±8 233±7

Pitch extraction was performed for 12.9k tokens (f0 could
not be extracted for 1.1k tokens). We analyzed tokens in six cat-
egories: (1) fillers, (2) fillers by a semantic boundary, (3) fluent
tokens, (4) tokens by a semantic boundary, (5) disfluent tokens
by an interruption point, and (6) tokens within disfluencies near
no semantic boundaries or interruption points. The f0 mean and
standard deviation were computed for each token; the average
of these statistics were then calculated for each category (1–6)
and then by speaker. We compared per-category statistics dif-
ferences between gender and age groups. Both male and female
pitch exhibited similar behaviors across most categories, with
an average f0 around 242Hz for fluent tokens. Female speakers
showed a slight increase in mean f0 for disfluent tokens, while
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male speakers showed a slight decrease in this category. An ag-
gregate of the data as separated by age is in Table 3: mean f0
for all categories decreased as age increased. Additionally, for
both genders and across all age groups, fluent tokens (category
3) and tokens within disfluencies near no boundary points (cate-
gory 6) both exhibited a lower standard deviation than the other
categories. These values are not normalized as children have
shown less regular variability in pitch than adults, likely due to
physiological differences.

4. Comparison to Adult Speech
4.1. Adult Speech Corpora

We compare disfluency patterns in our child speech corpus and
two adult speech corpora distributed by the Linguistics Data
Consortium: Switchboard (Swbd) [17] and CallHome [29].
Swbd is a collection of English telephone speech between two
strangers who were given specific topics. A subset of Swbd has
annotated disfluencies, making the corpus widely used in dis-
fluency detection research. CallHome comprises English tele-
phone conversations; the conversations are unscripted but most
participants chose to call their family members or close friends.

4.2. Comparative Statistics

Table 4 summarizes disfluency statistics in the 3 datasets. The
Child corpus has a significantly higher disfluency rate and
shorter average SU lengths than the adult corpora. Including
‘like’ as a filler, children have a higher filler rate. It has been
observed that adults use ‘uh’ much more frequently than ‘um’
[30], but the opposite is seen for the children in our corpus.
Inter-speaker rate variation is similar for children and adults.
Repair and reparandum statistics are given in Table 5. On av-
erage, children have longer reparandums than repairs, while the
opposite is true for adults. This analysis was done on simple
disfluencies, excluding complex/nested disfluencies.

Table 4: Disfluency statistics across 3 datasets. Bold de-
notes statistically significant difference between child speech
and adult speech at p < 0.01.

Child CallHome Swbd

# tokens 13,568 43,160 64,944
# turns 2,119 5,869 8,604
avg. SU length 6.4 7.4 7.5
disf. rate 10.1% 6.3% 6.2%
‘uh’ rate 0.5% 0.9% 2.7%
‘um’ rate 2.3% 0.6% 0.5%
frag. rate 1.8% 1.2% 0.5%

Table 5: Average statistics of repair and reparandum lengths
in 3 datasets. Bold denotes statistically significant difference
between child speech and adult speech at p < 0.01.

Child CallHome Swbd

# of disfluent regions 525 1068 2159
# non-nested disfluencies 474 922 1923
mean repair length 1.71 2.04 1.90
mean reparandum length 2.46 2.11 1.59
mean repair:reparandum ratio 0.87 1.13 1.25

4.3. Automatic Disfluency Detection

For automatic disfluency detection, we use a bidirectional
LSTM-CRF model with a neural pattern match network [31],
since this model (trained on Swbd) has been shown to be robust
in testing on different domains. The framework uses a BIO tag-
ging approach, where each token is predicted to be either fluent
or part of a reparandum, repair or both. Following most previ-
ous studies, the overall performance is measured in F1 score of
correctly predicted disfluencies in the reparandum.

The disfluency detection results on the Child data are shown
in Table 6 together with the results reported in [31] for the adult
conversation corpora. This system performs surprisingly well
on the child speech, achieving an F1 score that is 10% higher
than on CallHome. The fact that the child speech is elicited
by an unknown interviewer vs. a family member might explain
why disfluency detection worked reasonably well here com-
pared to on CallHome.

Table 6: Disfluency detection scores across 3 datasets

Measure Child CallHome Swbd

precision 0.85 0.66 0.93
recall 0.70 0.66 0.83
F1 0.77 0.66 0.88

In cases where the automatic system missed disfluencies in
the Child corpus, the disfluency tends to be more complex or
span over multiple tokens. Some examples are shown below,
with the missed disfluent tokens underlined.

• [[and to + and + and] we have to clean + [if + if you + if]
when it’s night we have to clean] our teeths

• because [you don’t want people to say + when you’re
talking you don’t want people to say] this

• and you can make different colors [at on- + out of + out
of] two colors

While we cannot directly compare results of different auto-
matic detection algorithms on different corpora, it is notable that
[12] reports roughly comparable automatic interruption point
detection results using only language cues for a system trained
on children’s speech (F1=0.75 vs. F1=0.73 for our corpus).

5. Conclusions
We presented a novel corpus of child speech transcripts anno-
tated with disfluencies. Our analyses show that disfluency pat-
terns in children are significantly different from adult speech:
children have higher disfluency and filler rates, have longer
reparandums than repairs, and exhibit gender differences both
similar (female children have lower disfluency rates) and dis-
tinct from adults (male children have lower filler rates). Despite
the domain mismatch, a disfluency detection system trained on
adult transcripts can detect disfluencies in our corpus relatively
well, achieving an F1 score of 0.77. Our acoustic analysis fur-
ther shows pitch pattern differences between children by gender
and age: pitch for both fluent and disfluent words reduces with
age, and female pitch increases slightly from fluent to disfluent
regions, while the opposite is observed for male children. We
are collecting and annotating data for a third year in this project,
which will provide further data for studying age effects.
Acknowledgements: This work was supported in part by Na-
tional Science Foundation (NSF) Grant #1734380.
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A. Martin, A. A. Pogossian, S. Spaulding, H. W. Park, M. Muco,
A. Alwan, and C. Breazeal, “A Robotic Interface for the Adminis-
tration of Language, Literacy, and Speech Pathology Assessments
for Children,” in Proc. of the Workshop on Speech and Language
Technology in Education (SLaTE), 2019, pp. 41–42.

[16] “Jibo Robot - He can’t wait to meet you,” Boston, MA, 2017.
[Online]. Available: https://www.jibo.com

[17] J. J. Godfrey and E. Holliman, Switchboard-1 Release 2
LDC97S62, Linguistic Data Consortium, 1993.

[18] E. Shriberg, “Preliminaries to a theory of speech disfluencies,”
Ph.D. dissertation, Department of Psychology, University of Cal-
ifornia, Berkeley, CA, 1994.

[19] S. Hahn and M. Ostendorf, “A sequential repetition model for im-
proved disfluency detection,” in Proc. Interspeech, 2013.

[20] K. Krishnamoorthy and J. Thomson, “A more powerful test for
comparing two poisson means,” Journal of Statistical Planning
and Inference, vol. 119, no. 1, pp. 23–35, 2004.

[21] S. F. McLaughlin and W. L. Cullinan, “Disfluencies, utterance
length, and linguistic complexity in nonstuttering children,” Jour-
nal of Fluency Disorders, vol. 14, no. 1, pp. 17 – 36, 1989.

[22] E. Shriberg, “Disfluencies in Switchboard,” in In Proceedings of
International Conference on Spoken Language Processing, Ad-
dendum (pp. 11–14, 1996, pp. 11–14.

[23] V. Peddinti, D. Povey, and S. Khudanpur, “A Time Delay Neural
Network Architecture for Efficient Modeling of Long Temporal
Contexts,” in Proc. of INTERSPEECH, 2015, pp. 3214–3218.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz,
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