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Abstract
False triggers in voice assistants are unintended invocations of
the assistant, which not only degrade the user experience but
may also compromise privacy. False trigger mitigation (FTM)
is a process to detect the false trigger events and respond appro-
priately to the user. In this paper, we propose a novel solution
to the FTM problem by introducing a parallel ASR decoding
process with a special language model trained from “out-of-
domain” data sources. Such language model is complementary
to the existing language model optimized for the assistant task.
A bidirectional lattice RNN (Bi-LRNN) classifier trained from
the lattices generated by the complementary language model
shows a 38.34% relative reduction of the false trigger (FT) rate
at the fixed rate of 0.4% false suppression (FS) of correct in-
vocations, compared to the current Bi-LRNN model. In addi-
tion, we propose to train a parallel Bi-LRNN model based on
the decoding lattices from both language models, and examine
various ways of implementation. The resulting model leads to
further reduction in the false trigger rate by 10.8%.
Index Terms: Voice Trigger Detection, False Trigger Mitiga-
tion, Lattice RNN, Language Model

1. Introduction
Voice trigger detection is a vital part of current voice assis-
tant products. In such systems, one or multiple trigger phrases
are defined for users to invoke the device to process voice re-
quests. The design of a trigger detector is often constrained by
limited computation resources and power consumption of hard-
ware, therefore we often adopt simple DSP and acoustic mod-
els [1, 2]. In practice, a trigger detector is usually operated in a
low-false-rejection mode in order to allow most acoustic sam-
ples to be passed to downstream processes. However, such de-
sign may cause the assistant (wrongly) respond to unintended
acoustic inputs. There are also cases when users accidentally
invoke the assistant through a UI element such as a button-press
or a particular gesture. Such unintended invocations of voice
assistants can be referred to as “false triggers”. To mitigate the
false trigger cases, one can introduce an extra process to deter-
mine whether an acoustic sample is intended or not, which is in
essence a binary classification problem.

The false trigger mitigation process can make use of both
acoustic and linguistic clues from the input sample. When the
errors are due to voice trigger detector, an intuitive approach
is to feed the acoustic sample into an ASR system and check
for the existence of trigger phrases in the 1-best output [3]. In
more general cases, the text output contains the intent informa-
tion from the user, therefore can be used as input to the classi-
fier. In [4], the 1-best output is encoded as an LSTM embed-
ding to represent the linguistic feature. It is combined with the
LSTM embedding of the acoustic features, and decoder features
including trellis entropy, Viterbi cost, confidence and average

number of arcs as the final input feature set to the classier. Con-
sidering the ASR results may contain errors, the decoder fea-
tures are designed explicitly to capture the ambiguity during the
decoding process. A recent follow-up work [5] focuses on im-
proving the acoustic features by incorporating utterance-level
representations. It also introduces dialog-type information to
facilitate the classifier to make better decisions.

To build an intent classifier, the authors of [6] propose a
condense representation of lattices from ASR decoder, called
“Lattice RNN” (LRNN). By introducing a pooling operation
over the incoming arcs of each node in the lattice, and a propa-
gation operation over the outgoing arcs of the nodes, the authors
are able to construct a neural network on a lattice, and encode
the whole lattice information as the vector output from the final
node of the lattice. The LRNN embedding is used as the input
vector of the intent classifier, which achieves better accuracy
and faster run-time, compared to the baseline model running on
N-best results. A similar approach can be applied to the FTM
task. Our previous work [7] redefined the feature set attached
to each arc in the decoder lattice, and extended the network to
bi-directional (Bi-LRNN). The decoding lattice is encoded as
the concatenation of hidden layers from the start and end nodes
of the lattice. Thus a classifier built on top of the Bi-LRNN is
able to mitigate the false trigger cases significantly. A recent
work [8] explored the use of graph neural networks (GNN) to
encode the decoding lattice, which achieves similar accuracy as
the Bi-LRNN representation with more efficient training.

In this paper, we investigate the impact of the decoder’s lan-
guage model (LM) on false trigger mitigation. Considering that
the voice assistant’s LM is usually well trained with in-domain
data, and the LM also tends to see more usage data with the
trigger phrase at the beginning, it is likely that the LM is biased
towards the in-domain data, which thereby biases it towards de-
tecting the trigger phase. This bias may reduce the power of
the decoding lattice in mitigating false triggers. In our study,
we train a new LM that is not biased to the trigger phrase and
in-domain data. We compare the mitigation performance be-
tween the Bi-LRNN classifiers built from the the lattice outputs
of different LMs. We further investigate how to make use of
the complementary information in two different language mod-
els, and propose some approaches to build parallel Bi-LRNN,
which leads to further improvement in false trigger mitigation.

2. Method
2.1. Bi-LRNN for false trigger mitigation
In our baseline Bi-LRNN system, we obtain the word hypothe-
sis lattice L for an acoustic sample X , from the ASR decoder.
The lattice consists of a start node, an end node, and other inter-
mediate nodes. The nodes are connected via arcs and each arc
has a feature vector associated with it. The Bi-LRNN computes
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a forward and backward latent embedding for each node in the
lattice (refer to [7] for more details).

The final outputs of the Bi-LRNN are the forward latent
embedding of the end node hf (send) and backward latent em-
bedding of the start node hb(sstart), where sstart and send de-
note the lattice’s start and end nodes. A feed-forward classifier
then takes the input as [hf (sstart), hb(send)]. The classifier
gives a real valued output y ∈ [0, 1], which is converted to a
label lpred ∈ {0, 1} by choosing a threshold t. The threshold
can be kept fixed at certain value, or can be evaluated empiri-
cally on the cross validation set, to achieve the desirable False
Suppression (FS) of invocation rate.

2.2. Parallel decoding with complementary LMs
A typical ASR decoding process can be formulated as search-
ing the best word sequence W ∗ that maximizes (1), where
P (X |W ) denotes acoustic model (AM), representing the
conditional probability of acoustic features X given a word se-
quence W , and P (W ) denotes language model (LM), repre-
senting the probability of any word sequence W . Ideally, the
LM of an ASR system should approximate the distribution of
all the word sequences that could reach the decoder. However,
in practice, the voice assistant application is only designed to
respond to a relevant set of user requests. So the LM is usu-
ally trained to maximize the likelihood of in-domain sentences.
If we refer to the in-domain sentences as a class LD , and out-
of-domain sentences as a class LO , the ASR LM trained from
in-domain data can be explicitly represented as P (W | LD) in
(2), with P (LD) denoting the prior probability of in-domain
usage.
W ∗ = argmax

W
{P (X |W )P (W )} (1)

= argmax
W
{P (X |W,LD)P (W | LD)P (LD)} (2)

To use the ASR decoding information to determine whether a
sequence of acoustic features represent an unintended invoca-
tion, we can compute the probability of in-domain usage given
the acoustic observation, P (LD | X). This measurement can
be expanded as in (4), in which the first factor is the summation
of AM and LM probabilities over all sentence hypotheses. An
approximation can be made to apply the summation over the
resulting lattice paths during decoding, when ignoring the low
likelihood word sequences being pruned. The Bi-LRNN em-
bedding can be interpreted as an implicit representation of such
measurement with more flexibility and modeling capacity. [7]
P (LD | X) = P (X | LD)P (LD) /P (X) (3)

=

∑
i {P (X |Wi,LD)P (Wi | LD)}P (LD)

P (X)
(4)

The drawback of the above measurement in (4) is that
P (W | LD) only contains in-domain information, so its power
of rejecting false triggered samples may be limited. If we
have a good estimation of out-of-domain sentences with LM
P (W | LO), we can construct a complementary measurement,
P (LO | X), which in theory should have more power to reject
false trigger. Equation (5) implies we will run ASR decoding
with a different set of LM, P (W | LO), to generate lattices
different from the default ones. We can apply the similar Bi-
LRNN operation on the out-of-domain lattices for more model-
ing capacity.

P (LO | X) =

∑
i {P (X |Wi,LO)P (Wi | LO)}P (LO)

P (X)
(5)

Furthermore, we can derive a probability ratio measurement as
shown in (6), which adopts the ratio between the in-domain
and out-of-domain probabilities given the acoustic observation
to balance the suppression/trigger decision. This measurement
implies two ASR decoders can be run in parallel to achieve two
different lattices from the same acoustic input. By combining
the information from both lattices, we may be able to achieve
better discriminative capacity between the two classes. Once
more, this measurement can be generalized by training two Bi-
LRNNs from the lattices of two decoders, and hopefully the
network can learn more complex relationship between the two
lattices when the targeting cost function is set to minimize the
classification errors.
P (LD | X)

P (LO | X)
=

∑
i {P (X |Wi,LD)P (Wi | LD)}P (LD)∑
j {P (X |Wj ,LO)P (Wj | LO)}P (LO)

(6)

2.3. Ensembling parallel Bi-LRNNs
In the error analysis (Section 3.4), we show that the base model
is more accurate for some examples, and the out-of domain
model is better on others, depending on the true label of the ex-
ample. Thus, the language models likely represent complemen-
tary information, and a model comprised of both the LMs could
out-perform the individual models based on either of the LM.
To achieve this, the outputs from the two Bi-LRNN models can
be combined in different ways before passing to the classifier.
We explore the following ensembling techniques, and compare
the FT rates achieved by each of them in Section 3.5:

• Combine scores from the pre-trained Bi-LRNNs: We
take the prediction scores y1 and y2 from the two Bi-
LRNNs trained separately, and pass them to a shallow
classifier. (Only classifier layers are trained).

• Combine the Bi-LRNN embeddings from the pre-
trained Bi-LRNNs: We take the latent Bi-LRNN em-
beddings h1f , h1b , h2f , h2b from the pre-trained Bi-
LRNNs, and pass them to a classifier (Here again, only
the classifier is trained).

• Train the Bi-LRNNs in parallel, by back-propagating
the classifier loss: The setting is the same as the pre-
vious case, but we back-propagate the classifier loss to
both the Bi-LRNNs as well. Thus, the entire model
is trained end-to-end (from scratch or by loading the
weights of the trained Bi-LRNNs and fine-tuning them).
The schematic of the model is shown in Figure 1.

• Mixture of Experts: Instead of concatenating the em-
beddings of the two Bi-LRNNs, we can pass their
weighted sum to the classifier. A Mixture of Experts
model [9], computes the relative importance of each “ex-
pert” (in this case, the two Bi-LRNNs are the “experts”),
and weighs the outputs of the models by a parameter
α. The weight parameter α determines the reliability
of each Bi-LRNN for an input sample, and we pass a
weighted sum of the lattice embeddings to a classifier([
αh1f + (1− α)h2f , αh1b + (1− α)h2b

])
. The

model is trained end-to-end. The schematic of the model
is shown in Figure 2.

3. Experiment and results
3.1. FTM Dataset and evaluation metrics
All our experiments are performed on an FTM dataset [8],
which is composed of far field usage samples with manual la-
bels of “true trigger” (TT) and “false trigger” (FT) classes. The
raw audio data are split into train, cv, dev, and eval sets for the
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Figure 1: Schematic diagram of Parallel LRNN model

purposes of training, cross-validation, development and evalua-
tion. The train and cv sets are augmented by adding gain, noise,
and speed perturbations, which increases the amount of training
data by 3x. Table 1 summarizes the amount of data in each set
and condition.

We train FTM classifiers for multiple epochs on the train
set. The training epoch which achieved the lowest FT on the cv
set is evaluated on the dev and eval sets. We expect our voice
assistant to have minimal false triggers, and maximum true pos-
itives (minimal FS), for a good user-experience. We thus focus
on the low FS regime in our DET curves, and the lower the AUC
(Area Under Curve) of the DET curve, the better the model. In
our experiments, we arbitrarily choose a small FS rate of 0.4%
to act as the operating point. So the False Trigger (FT) rate at
this FS rate is the key metric in evaluating the false trigger miti-
gation models, while the AUC gives us an estimate of how good
the model performs overall, irrespective of the operating point.
We set the threshold that achieves the target FS rate (0.4%) on
the dev set. The performance metric of concern to us is the cor-
responding FT rate on the eval set.

3.2. ASR decoder and baseline models
In all experiments, we adopt an internal ASR decoder with var-
ious model configurations. The acoustic model has an Hid-
den Markov model (HMM) and Convolutional Neural Network
(CNN) hybrid structure [10], which is trained with filter bank
features from US English speech data using cross-entropy and
subsequent BMMI objective functions [11]. The CNN com-
prises 50 layers and uses the scaled exponential linear unit
(SELU) activation function to achieve self-normalization dur-
ing training [12], which achieves state-of-art performance. The
baseline language model in the decoder is a 4-gram model in-
terpolated from multiple sub-LMs trained from different data
sources that are relevant to the far field application (in-domain).
The data sources include enumerations of various usage do-
mains, the re-decoding transcripts of live usage, and accumu-
lated error corrections from the users. All the sub-LMs share a
word lexicon with a vocabulary size of around 570K. The fi-

Label train cv dev eval
True Trigger 14, 225× 3 1, 582× 3 5, 829 11, 646
False Trigger 6, 223× 3 691× 3 5, 657 11, 316

Table 1: FTM dataset for model training and evaluation

Figure 2: Schematic diagram of Mixture of Experts model

nal interpolated LM is pruned to contain about 4.9M 4-grams,
8.0M trigrams and 4.8M bigrams. We refer to this as the
BaseLM.

3.3. Bi-LRNN based on complementary LM
In order to capture the out-of-domain usages, we consider
the following data sources to train a complementary language
model called ChatterLM. The first data source is from the au-
tomatic transcriptions of the dictation application; the second
source is from the voice search application. The language us-
age styles of these two applications are different from that of the
assistant application in our current study. The third source is ar-
tificial data generated from enumeration of extra use cases that
are not relevant to the specific device under study. The Chat-
terLM is built in the same way as the BaseLM in production,
then combined with the baseline AM for the ASR decoder to
use.

With the two sets of ASR models, we generate decoding
lattices on the FTM train and cv sets, then build two separate
Bi-LRNN classifiers from the lattice features. To compare the
accuracy between the two classifiers, we plot the DET curves
of them on the eval sets in Figure 3 (We plot only the region
of interest of the DET curve, ie FS < 1%). At the operation
points around the fixed FS rate of 0.4%, the ChatterLM based
classifier achieves a lower FT rate than the baseline classifier
based on BaseLM. The relative reduction of FT rate is 38.34%
(FT reduces from 19.35% for the BaseLM based Bi-LRNN to
11.93% for the ChatterLM based Bi-LRNN). Such a significant
FT rate reduction clearly indicates that the LM trained from out-
of-domain data sources is more capable of detecting false trig-
gers than the LMs trained from in-domain data sources.

3.4. Error Analysis
We choose the two Bi-LRNN classifiers, which use lattices from
the BaseLM and the ChatterLM respectively, to further analyze
the error patterns. The idea is that if the models make mis-
takes on different samples, then ensembling them would pro-
vide complementary information, and thus improve the over-
all performance. We compute the matrix showing the num-
ber of samples for which the BaseLM Bi-LRNN and the Chat-
terLM Bi-LRNN got the predictions correct and incorrect (see
Table 2). Both models achieve very high accuracy on the True
Trigger (TT) class, with BaseLM being the more accurate of
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Figure 3: DET curves of BaseLM and ChatterLM LRNN models.

the two. For the False Trigger (FT) class, both models are
less accurate, and ChatterLM is more accurate than BaseLM
(only 3.66% samples where BaseLM Bi-LRNN gets correct and
ChatterLM Bi-LRNN gets wrong, cf. 20.27% samples where
BaseLM Bi-LRNN gets wrong and ChatterLM Bi-LRNN gets
correct). These results align with our expectations, as the Chat-
terLM Bi-LRNN model is expected to be more accurate for un-
intended speech samples since it uses an LM trained on out-of-
domain data, while the BaseLM Bi-LRNN uses the LM primar-
ily trained on in-domain data. Thus, the models are stronger in
different sample spaces, and should be able to complement each
other when used together in an ensemble model.

3.5. Parallel Bi-LRNNs
Assuming we have two ASR models available, one comprising
of the LM trained on in-domain data (BaseLM), and the other
comprising of LM trained on out-of-domain data (ChatterLM),
we can leverage the two complementary lattices by training par-
allel Bi-LRNN classifiers. We implement the different ensem-
bling methods proposed in Section 2.3 to compare their perfor-
mance. Figure 4 shows the DET curves (restricted to the region
of interest) of different parallel Bi-LRNN models, along with
that of the single ChatterLM based Bi-LRNN. Table 3 shows
the FT rates of these classifiers at the fixed FS rate of 0.4%, and
the Area under the DET curve. Fully trained parallel Bi-LRNNs
achieve a better FT rate than the ChatterLM based single Bi-
LRNN classifier, while the classifiers trained on merged scores
or embeddings, and the Mixture of Experts model perform bet-
ter than the BaseLM based Bi-LRNN classifier, but worse than
the ChatterLM based classifier alone. The best performance is
achieved by the classifier trained by fully back-propagating the
loss to the Parallel Bi-LRNNs – 10.8% relative reduction in FT
rate (over the ChatterLM based Bi-LRNN baseline). Initializing
the Bi-LRNNs with individually pre-trained Bi-LRNNs gives
almost identical results as random initialization (red and cyan

ChatterLM Correct ChatterLM Wrong

TT BaseLM Correct 99.4% 0.39%
BaseLM Wrong 0.08% 0.09%

FT BaseLM Correct 66.3% 3.66%
BaseLM Wrong 20.27% 9.76%

Table 2: Error Analysis of True (TT) and False (FT) Triggers

Classifier FT at FS = 0.4% AUC

BaseLM based Bi-LRNN 19.35% 0.0067
ChatterLM based Bi-LRNN 11.93% 0.0041

Classifier on merged scores 12.4% 0.0037
Classifier on merged embedding vectors 13.83% 0.0087
Fully trained parallel Bi-LRNN
(random initialization) 10.64% 0.0049
Fully trained parallel Bi-LRNN
(initialized with pre-trained weights) 10.80% 0.0043
Mixture of Experts 12.18% 0.0051

Table 3: False Trigger rates for different models

Figure 4: DET curves of ChatterLM and Ensemble of parallel Bi-
LRNNs trained on BaseLM and ChatterLM

curves in Fig 4); At the operating point (FS = 0.4%), fine-tuning
the pre-trained Bi-LRNNs is slightly worse than training from
random initialization, although the former has marginally lower
AUC. The improvement made by parallel Bi-LRNN model over
the single ChatterLM based Bi-LRNN is consistently signifi-
cant in our region of interest, ie, for FS rates below 1%.

4. Conclusions
We proposed a novel solution to the ASR lattice based false
trigger mitigation approach by introducing a complementary
LM to the decoding process. The LM is trained from out-
of-domain data sources and provides complementary informa-
tion to the original LM optimized for in-domain ASR accuracy.
We demonstrated that a Bi-LRNN classifier built from the lat-
tices generated from the complementary LM significantly out-
performs the classifier built from the baseline ASR model set.
With this single ChatterLM Bi-LRNN, we achieved a 38.34%
relative reduction of the FT rate at the fixed 0.4% FS level com-
paring to the current production FTM model. Furthermore, we
proposed a novel approach of parallel Bi-LRNN, and examined
multiple ways to implement and train the classifier. By back-
propagating the training loss fully to the parallel Bi-LRNN net-
work, we saw a further 10.8% relative reduction of the FT rate.
These results indicate that there is room for improving the tra-
ditional ASR decoder in the FTM task, and encourage us to
reconsider the architecture design that can enable parallel LM
decoding and parallel Bi-LRNN computation.
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