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Abstract
Emotion is high-level paralinguistic information charac-

teristics in speech. The most essential part of speech emo-
tion recognition is to generate robust utterance-level emotional
feature representations. The commonly used approaches are
pooling methods based on various models, which may lead to
the loss of detailed information for emotion classification. In
this paper, we utilize the NetVLAD as trainable discrimina-
tive clustering to aggregate frame-level descriptors into a single
utterance-level vector. In addition, to relieve the influence of
imbalanced emotional classes, we utilize unigram label smooth-
ing with prior emotional class distribution to regularize the
model. Our experimental results on the Interactive Emotional
Motion Capture (IEMOCAP) database reveal that our proposed
methods are beneficial to performance improvement, which is
3% better than other models.
Index Terms: speech emotion recognition, NetVLAD, unigram
label smoothing

1. Introduction
Emotions conveys underlying intent of speech signals, which
can help intelligent human-machine interaction systems to un-
derstand the users’ intentions [1]. Emotions can be quantified
with discrete categories statically over utterances [2]. One chal-
lenge arising is to obtain robust utterance-level feature repre-
sentations for emotion classification.

The researchers have proposed many methods to handle this
problem. Traditionally, the emotional speech is encoded into
one feature vector which is the statistics of low-level frame-
based handcrafted acoustic features [3]. However, these is no
still consensus about appropriate emotional acoustic features.
Another type of approaches are pooling methods based on var-
ious models which convert emotional temporal sequence to a
fixed dimension feature vector. Han et al. [4] constructed
utterance-level features from segment-level probability distri-
butions using deep neural networks. Tzinis et al. [5] intro-
duced recurrent neural networks to capture emotional temporal
information, which only considered final state of the recurrent
layers. Chao et al. [6] compared different pooling methods
and highlighted the advantage of mean pooling. Mirsamadi et
al. [7] focused on specific regions of speech signal with at-
tention weights that were more emotionally salient, which pro-
vided more accurate predictions. Huang et al. [8] extracted
discriminative emotional embedding features based on a triplet
framework, which also contained pooling operations. However,
these pooling methods would loss dynamic temporal informa-
tion that strongly reflects a change in emotional state [9].

Different from these methods, we utilize a trainable gen-
eralized Vector of Locally Aggregated Descriptors (NetVLAD)
to settle this problem. VLAD [10] stored the sum of residuals
vector between the descriptors and cluster centers to produce
the feature vector. Arandjelovic et al. [11] replaced the hard
assignment of VLAD with soft assignment, namely NetVLAD,
to make the VLAD pooling differentiable for neural networks.
NetVLAD would generate more discriminative representations
based on different cluster centers for speech emotion recogni-
tion, which has been shown to outperform pooling methods in
the place recognition [11] and speaker recognition [12].

The effectiveness of speech emotion recognition depends
on the quality of utterance-level feature representations, and is
also affected by the distribution of emotional classes. However,
speech emotion recognition usually encounters the problem of
imbalanced emotional classes. For instance, the number of neu-
tral and happy is usually more than other classes. Actually, this
situation also exists in real life. Wang et al. [13] collected
speech emotion utterances from a Microsoft spoken dialogue
system and found similar imbalanced phenomenon. Many users
were excited to talk with the dialogue system, so there were lots
of happy samples. There were only a small number of sad ut-
terances in the dataset because people did not want to talk with
a chatbot when they were in a sad mood. In a word, imbalanced
emotional classes is reasonable from a practical perspective.

However, the researches have shown that the class imbal-
ance will cause performance degradation since the class own-
ing majority samples would affect the learning behavior of the
deep neural networks by dominating their gradient [14]. As
a result, the model would favor the class owning more train-
ing samples. Some simple methods such as down-sampling and
data-generating can relieve the influence [15], which are subop-
timal. Zhang et al. [16] introduced the focal loss to handle the
problem of imbalanced emotional classes, which suppressed the
contribution of majority samples and gained more focus on the
minority samples. Li et al. [17] replaced the angular softmax
with softmax to alleviate the severe data imbalance. Another
strategies are to penalize the entropy of network’s output distri-
bution with label smoothing regularization [18]. Label smooth-
ing reduces overfitting by preventing a network from assigning
full probability to each training example. Further, Pereyra et al.
[19] smoothed the labels with data’s own distribution, defined
as unigram label smoothing, to improve state-of-the-art models.
In this paper, we use label smoothing to restrain the problem of
imbalanced emotional classes.

In this paper, we utilize the NetVLAD to generate effec-
tive utterance-level feature representations for speech emotion
recognition. Besides, label smoothing is used to relieve the
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Figure 1: The overview of our proposed model including three parts: frame-level emotional LSTM model, the NetVLAD layer and
unigram label smoothing.

problem of imbalanced emotional classes. The rest of the pa-
per is organized as follows: section 2 introduces the proposed
methods. Section 3 presents the database and acoustic emo-
tional features. In section 4, we describe experimental results
and analysis. Finally, we conclude the paper in section 5.

2. Proposed methods
Our proposed speech emotion recognition model is shown in
the Figure 1 including frame-level emotional LSTM layer, the
NetVLAD layer and label smoothing. The inputs of the model
are low-level frame-based features which will be described in
the section 3.2. The middle frame-level LSTM layer is respon-
sible to encode emotional dynamic temporal information. The
next NetVLAD layer aggregates the outputs of LSTM layer
along the temporal axis to produce fixed-length high-level rep-
resentations followed by a softmax classifier. Finally, we utilize
label smoothing to penalize low entropy output distributions.

2.1. NetVLAD

We utilize the NetVLAD to produce high-level feature repre-
sentations. Intuitively, the VLAD layer can be thought as train-
able discriminative clustering: every frame-level descriptor will
be softly assigned to different clusters, and their residuals are
encoded as the NetVLAD vector outputs. The NetVLAD layer
takes dense descriptors from LSTM sequences as inputs in Fig-
ure 2 and produces a single K × D matrix V , where K refers
to the number of chosen clusters, and D refers to the dimen-
sion of each cluster. Concretely, the matrix of descriptors V is
computed using the following equation:

V (k, j) =

T∑
t=1

ewkxt+bk∑K
k′=1 e

wk′xt+bk′
(xt (j)− ck (j)) (1)

where {wk}, {bk} and {ck} are trainable parameters with k ∈
[1, 2, ...,K], T is the frame length of speech samples.

The first term of (1) corresponds to the soft assignment
weight of the input vector xi for cluster k, while the second
term computes the residual between the vector and the clus-
ter centers. The final outputs are obtained by performing intra-
normalization and L2 normalization. Discriminative represen-

tations emerge because the entire network is trained in an end-
to-end manner for speech emotion recognition.

Figure 2: The workflow of the NetVLAD layer.

2.2. Label smoothing

We utilize label smoothing to alleviate the problem of im-
balanced emotional classes. Label smoothing estimates the
marginalized effect of label-dropout during training, and pre-
vents the peaked distributions, which regularizes the model to
make it more adaptable.

Specifically, for a example xwith label y, the log-likelihood
q (k|x) = δk,y , where δk,y is Dirac delta, which equals 1 for
k = y and 0 otherwise. The cross entropy loss maximizes the
log-likehood.

q′ (k|x) = (1− α) δk,y + αu (k) (2)

where α is a smoothing parameter. It is weighted mixture of the
original ground-truth distribution q (k|x) and the fixed distribu-
tion u (k). u (k) is 1/C for uniform label smoothing, where C
is the number of emotional classes. u (k) is prior class distribu-
tion for unigram label smoothing.

3. Database and feature sets
3.1. Dataset

We use Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [20] to evaluate our proposed methods. This corpus
records (approximately a total of 12 hours) over 5 dyadic ses-
sions with 10 subjects. Each interaction is around 5 minutes
in length, and is segmented into sentence levels. We consider
only the utterances with majority agreement (at least two out of
three evaluators gave the same emotion label). Similar to prior
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studies [8][21], the following four emotions are included: “an-
gry”, “happy”, “sad”, and “neutral”, with “excited” considered
as “happy”. In total we use 5,531 utterances: 20.0% “angry”,
19.6% “sad”, 29.6% “happy”, and 30.8% “neutral”. The ex-
periment protocol is leave-one-speaker-out and the evaluation
metric is unweighted accuracy (UA).

3.2. Feature set

The inputs of LSTM layer are short-time frame-level acoustic
features. The feature set is based on the INTERSPEECH 2014
Computational Paralinguistics Challenge [22]. We also add the
first dimension of the MFCC, the first order derivatives of all the
LLDs, as well as the second order derivatives of MFCC 0-14.
The resulting 147 LLDs features are extracted by openSMILE
[23].

4. Experiments and analysis
4.1. Experiment settings

We build speech emotion recognition systems based on LSTM
model. There is one LSTM layer with 64 memory cells in these
systems. We use dropout after LSTM layer with the rate 0.5.
The maximum training epochs are 50. The batch size is 32.
Adadelta optimization algorithm is utilized. In addition, we in-
ject the Gaussian noise with standard deviation 0.01 into the
input features for robust modeling. The dimension of each clus-
ter D is 64. For the unigram smoothing, the unigram prior is
computed on the training set.

4.2. Speech emotion recognition based NetVLAD

In this paper, we employ NetVLAD to produce more effective
feature representations, which is a concatenation of per cluster
residuals weighted by their assignment weights. As a result, the
model makes full advantage of temporal sequence information,
and generates more emotional-oriented representations. The ex-
perimental results, illustrated in Figure 3, show the introduc-
tion of NetVLAD is beneficial to performance improvement.
We find the models with four clusters achieve best performance
62.6%, and too many or too few clusters would decline the per-
formance. Actually, it conforms with the number of emotional
classes, which indicates the clusters are corresponding to the
aggregation area of emotional classes implicitly. The weight of
soft assignments represents the closeness with different emo-
tional classes.

Figure 3: The performance of the NetVLAD models with differ-
ent clusters.

(a) final-pooling (b) max-pooling

(c) mean-pooling (d) weighted-pooling

Figure 4: Different pooling methods.

We compare the NetVLAD method with other three com-
mon adopted sequence-to-label LSTM models. The first is
final-pooling shown in the Figure 4(a), which only picks the
final state of all hidden states as the emotional representations.
The second is max/mean-pooling shown in the Figure 4(b) and
4(c), which calculates the average/maximum of all hidden states
as the emotional representations. The third is weighted-pooling
shown in the Figure 4(d), which computes a weighted sum of all
hidden state as the emotional representations, where the weights
are normally determined with an additional attention mecha-
nism.

As shown in Table 1, mean-pooling achieves relatively
higher accuracy than final-pooling and max-pooling. Weighted-
pooling outperforms other models, probably because more
emotionally relevant information is captured by the attention
mechanism. The conclusions are similar to the work [7]. How-
ever, these pooling methods would lose much temporal infor-
mation from successive frames inevitably. NetVLAD has the
ability to capture emotional content from frame-level feature
sequences and achieves better performance than these pooling
methods.

Table 1: The performance of different pooling methods.

Methods Accuracy

final-pooling 53.8%
max-pooling 56.8%
mean-pooling 59.6%

weighted-pooling 60.3%
NetVLAD 62.6%

4.3. The effect of label smoothing

Label smoothing encourages the differences between the largest
logit and others to become large, which prevents the overfitting
and increases the generalization of the models. We explore two
types of label smoothing methods based on basic LSTM model
with mean-pooling, uniform label smoothing and unigram label
smoothing. The experimental results with different α value of
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(2) are shown in Figure 5. The performance of the models with
label smoothing is better than the model with no label smooth-
ing 59.6%. The performance of two label smoothing methods
is comparable when α is 0.1, while unigram label smoothing is
superior to uniform label smoothing with larger α. The opti-
mal α is 0.2 and uniform label smoothing achieves the accuracy
62.0%. Therefore, prior class distribution information is help-
ful to emotional modeling more accurately, further improves the
performance.

Figure 5: The performance of different label smoothing meth-
ods.

Further, Figure 6 lists the confusion matrixes for no label
smoothing 59.6%, uniform label smoothing 61.4% and unigram
label smoothing 62.0%. The results reveal no label smoothing
has a bias towards angry and happy than neutral and sad. Uni-
form label smoothing shows more uniform distribution results
which reduces the accuracies of angry and happy, and increases
the accuracies of neutral and sad. With the help of prior class
distribution, the results of unigram label smoothing are also bi-
ased, while the accuracies of most classes have been improved
compared with no label smoothing.

(a) no label smoothing

(b) uniform label smoothing (c) unigram label smoothing

Figure 6: The confusion matrixes of no label smoothing, uni-
form label smoothing and unigram label smoothing.

4.4. Comparison

Finally, we combine the NetVLAD and unigram label smooth-
ing strategies together to build the system as shown in Figure
1. We obtain the best performance is 63.5% with four clusters
when α is 0.2. Therefore, these two strategies can promote each
other and further improve the performance effectively.

We also compare the proposed model with other methods
of the literature. Han et al. [4] used deep neural networks to
construct utterance-level features, followed by extreme learn-
ing machine to obtain 52.1% accuracy. Neumann et al. [24] ap-
plied an attentive convolutional neural network with multi-view
learning objective function, which achieved 56.1% for speech
emotion recognition. Fayek et al. [21] introduced a frame-based
formulation to model intra-utterance dynamics with end-to-end
deep learning, whose accuracy is 58.1%. The work [8] extracted
discriminative embedding features based on a triplet framework
with LSTM model, reaching the accuracy 60.4%. Our proposed
method achieves better performance than these different pool-
ing methods based on different models, which verifies the ef-
fectiveness of generating robust utterance-level representations
with NetVLAD and unigram label smoothing to regularize the
model.

Table 2: Performance comparison between our model with
other methods.

Methods Accuracy

DNN [4] 52.1%
CNN [24] 56.1%

LSTM [21] 58.1%
Triplet framework [8] 60.4%

Proposed model 63.5%

5. Conclusions
In this paper, we utilize NetVLAD to produce more effective
feature representations. The models with NetVLAD make full
advantage of temporal sequence information, and generate more
emotional-oriented representations. The results show the supe-
riority of NetVLAD than general pooling methods. And the op-
timal number of clusters is four, which is corresponding to the
number of emotional classes. It indicates the clusters are corre-
sponding to the aggregation area of emotional classes implicitly.
The weight of soft assignments represents the closeness with
different emotional classes. In addition, we utilize unigram la-
bel smoothing to alleviate the problem of imbalanced emotional
classes. The results reveal that unigram label smoothing is bet-
ter than uniform label smoothing with the help of prior class
distribution information. The combination of the NetVLAD and
unigram label smoothing further boosts the performance signif-
icantly. In the future, we will explore more effective methods
to generate robust feature representations for speech emotion
recognition.
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