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Abstract
In this paper, we present VIsual Speech In real nOisy eNvi-
ronments (VISION), a first of its kind audio-visual (AV) cor-
pus comprising 2500 utterances from 209 speakers, recorded
in real noisy environments including social gatherings, streets,
cafeterias and restaurants. While a number of speech enhance-
ment frameworks have been proposed in the literature that ex-
ploit AV cues, there are no visual speech corpora recorded in
real environments with a sufficient variety of speakers, to en-
able evaluation of AV frameworks’ generalisation capability in
a wide range of background visual and acoustic noises. The
main purpose of our AV corpus is to foster research in the area
of AV signal processing and to provide a benchmark corpus that
can be used for reliable evaluation of AV speech enhancement
systems in everyday noisy settings. In addition, we present a
baseline deep neural network (DNN) based spectral mask es-
timation model for speech enhancement. Comparative simula-
tion results with subjective listening tests demonstrate signifi-
cant performance improvement of the baseline DNN compared
to state-of-the-art speech enhancement approaches.
Index Terms: Speech Enhancement, Audio-Visual Fusion, VI-
SION Corpus, Deep Learning, Multi-modal Speech Processing,
Listening Tests

1. Introduction
Approximately 360 million people in the world currently suffer
from a debilitating hearing loss [1]. By 2030, these numbers
are expected to rise by 50%. The most common age-related and
noise-induced hearing losses are progressive and neither curable
nor reversible. People with serious hearing-issues often find
themselves socially isolated leading to depression and a range
of other negative consequences. Hearing aids and cochlear im-
plants are the most widely used devices for compensating hear-
ing loss. However, even sophisticated listening devices cause
huge problems for the hearing impaired, as they often make the
speech more audible but do not always restore intelligibility in
noisy social situations [2]. Human beings in such settings are
known to exploit the audio-visual nature of speech to contextu-
ally suppress background noise and focus on the target speech.

In addition, it is well known that visual information help
disambiguate the phonological ambiguity. For example, in
speech recognition, people integrate AV cues in order to bet-
ter perceive speech. This phenomenon was observed in the
McGurk effect [3] where a visual /ga/ with a voiced /ba/ is
perceived as /da/ by most subjects. In particular, the visual
cues provide information on the place of articulation [4] and
muscle movements that can often aid to differentiate between
speech with similar acoustic sounds (e.g., the unvoiced conso-
nants /p/ and /k/).

In the literature, extensive research has been carried out,
inspired by the unique human hearing ability, to develop sin-

gle channel and multi channel AV speech enhancement (SE)
frameworks [5, 6, 7, 8, 9, 10, 11]. Most of these frameworks
use a synthetic mixture of clean speech and noises to evaluate
the enhancement quality and intelligibility. However, a syn-
thetic mixture does not depict everyday noisy settings, since in
real mixtures the speech is often reverberantly mixed with mul-
tiple competing background sources and the Lombard effect is
observed.

Although, there exist a number of controlled AV speech
corpora [12, 5, 13, 14, 15] with limited vocabulary and noise
types, there is need for more realistic AV speech data compris-
ing a wide variety of speakers, competing noises and visual im-
perfections. Recently, Gogate et al. [10] introduced ASPIRE, a
AV speech corpus recorded in real noisy settings such as restau-
rants and cafeterias. However, the main limitation with the cor-
pus is the lack of speakers variety as it only consists of three
speakers’ recorded uttering sentences from the limited vocabu-
lary Grid corpus[16]. Further, the noisy visual recording con-
ditions are ideal with uniform lighting and minimum speaker
movements. We envisage future AV hearing devices will not
only be expected to generalise on a large variety of speakers,
including non-native English speakers, but also work with noisy
visual data including speaker movement, imperfect lighting and
various levels of background noises. To the best of our knowl-
edge, there currently exists no medium vocabulary AV corpus
that comprises a sufficient number of speakers along with a va-
riety of acoustic and visual noises.

In this study, we introduce VISION, a first of its kind
medium vocabulary, binaural AV corpus comprising 2500 utter-
ances from 209 speakers, recorded in real noisy settings includ-
ing social gatherings, streets, cafeterias and restaurants. The
corpus can serve as a test or validation set for the development
of AV speech enhancement/separation, speech recognition and
lip reading systems. In addition, we present a baseline deep
neural network (DNN) based spectral mask estimation model
for speech enhancement. The DNN model integrates convolu-
tional feature extraction with long short-term memory (LSTM)
to take into account the temporal dynamics and long-term con-
textual dependencies of AV data, and is trained on a synthetic
mixture of GRID [12] and CHiME3 [19] corpus. The DNN
learns the correlation between noisy AV cues and the ideal bi-
nary mask (IBM) to estimate noise and speech dominant re-
gions. Finally, the enhanced speech is re-synthesised by com-
bining the processed signal across frequency channels. We ex-
ploit the VISION corpus to demonstrate superior speech quality
resulting from application of our proposed baseline over state-
of-the-art A-only speech enhancement approaches, including
spectral subtraction (SS) and linear minimum mean square error
(LMMSE), as well as recent DNN based AV speech enhance-
ment models, including the new CochleaNet[10]).

The rest of the paper is organised as follows: Section 2 in-
troduces the VISION corpus. Section 3 presents the baseline
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Figure 1: Sample Frames from the VISION Corpus

Dataset Modality Speakers Real Noisy
Environment

Noise types

COSINE [17] A-only 133 Yes Cafeteria, Streets
VOICES [18] A-only 300 No Television, Speech
GRID [12] AV 34 - No noise
Mandarin Sentences [5] AV 1 - No noise
AVSPEECH [13] AV - - No noise
BANCA [14] AV 208 Yes Speech noise only
AVICAR [15] AV 100 Yes Car noise only
ASPIRE [10] AV 3 Yes Cafeteria, Restaurant, Speech
VISION AV 209 Yes Social gathering, Street, Cafeteria, Speech

Table 1: Comparison of VISION with state-of-the-art A-only and AV Corpora
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Figure 2: Recording Setup

DNN based AV SE model. Section 4 discusses comparative ex-
perimental results and finally, Section 5 concludes this work and
proposes some future directions.

2. Vision Corpus
In the literature, as illustrated in Table 1, extensive research has
been carried out to develop A-only and AV corpora for speech
enhancement. It can be seen that previous AV corpora recorded
in real noisy environments consist of limited noise types (vi-
sual and acoustic) and speakers. In this section, we present VI-
SION, a first of its kind medium vocabulary AV speech corpus
recorded in real noisy environments to support evaluation of AV
SE frameworks. Fig. 1 shows a few sample frames from the VI-
SION corpus.

2.1. Sentence Design

The VISION corpus follows the same sentence format as IEEE
‘Harvard’ sentences [20]. The sentences consist of 720 pho-
netically balanced sentences. Most of the words are monosyl-
labic (e.g. cat, break, bus), with exception of a few words that
are longer (e.g. shimmered, friendly). The sentences are se-
lected to represent various phonemes of English in accordance
with their frequency of occurrence. The IEEE sentences were
used because of the low word context predictability, standard-
ised sentence structure and length.

2.2. Speaker Population

209 speakers (105 male and 104 female) contributed in the cor-
pus. The speakers age ranged between 18 to 55. Most of the
participants spoke English as their first language. A limited
number of participants were recorded with English as their sec-
ond language. The corpus comprises a total 2500 utterances
(around 3 hours) recorded in a range of real world noisy envi-
ronments. The distribution of the noisy environment is depicted
in Table. 2.

2.3. Collection

The VISION corpus has been recorded in real noisy environ-
ments including busy cafeterias, restaurants, streets and social
gatherings. The recorded setup is depicted in Fig. 2. An Ap-
ple iPad mini was used to prompt the sentences to the user and
record the video. The listener was holding the iPad opposite
to the speaker at an approximate distance of 100 cm. In addi-
tion, a high quality Sennheiser binaural microphone was used
to record the audio. A custom iOS application was developed
to simultaneously prompt the sentence and to record the video
(consisting of speaker’s face and background surrounding) and
audio from the iPad and binaural microphone respectively. This
ensured synchronisation between the binaural audio and video.

The purpose of the research was first explained in detail to
the speakers prior to recording. Initially, the participants were
trained with a few utterances. They were allowed to repeat sen-
tences if any mistake identified by the speaker or listener. In
total, 2500 utterances were collected in real noisy environments
and around 5% of the utterances were re-recorded.

3. Proposed Baseline DNN-driven AV
Speech Enhancement System

This section describes the proposed baseline DNN architecture,
inspired by CochleaNet[10], depicted in Fig. 3.
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Figure 3: Proposed DNN based Speech Enhancement Baseline Model

Noisy Environment # utterances
University 734
Street 633
Social gathering 677
Cafeteria/Restaurant 456

Table 2: VISION corpus: Noisy environments distribution

3.1. Audio Feature Extraction

The input temporal short-time fourier transform (STFT) magni-
tude features are first fed into a batch normalisation layer. The
batch normalisation output is then fed into the audio-feature ex-
traction part of the network with 5 convolutional layers. The
first four convolutional layers consist of 64 filters and the last
convolutional layer consists of 8 filters. Each filter is of size
3 x 3. After each convolutional layer, batch normalisation and
ReLU activation is applied. The output of the last convolutional
layer is fed into the AV fusion part of the framework as shown
in Fig. 3.

3.2. Video Feature Extraction

The cropped temporal lip images are fed into the visual-feature
extraction part of the framework with four convolutional layers
including 32, 48, 64 and 96 filters respectively. Each convolu-
tional filter is of size 3 x 3. ReLU activation is used after each
convolutional layer. The output of the last convolutional layer
is fed into a LSTM layer with 512 units. The visual features
at 25 frames-per-second (fps) are upsampled by a factor of 3 to
match the audio feature sampling rate i.e. 75 vector-per-second
(VPS). The output of the LSTM layer is fed into the AV fusion
part of the framework. Note that the convolutional weights are
shared across the temporal dimension.

3.3. Audio-Visual Fusion

The features extracted from audio and video streams are con-
catenated across the time dimension and fed into a bidirectional
LSTM layer with 512 units. Note that the visual features are
upsampled to match the audio VPS. The output of the bidirec-
tional LSTM is concatenated and fed into 2 fully connected lay-
ers with 526 neurons and ReLU activation. Finally, the output of
the last connected layer is fed into an output layer with sigmoid

activation. Note that the A-only baseline model is constructed
by removing the video-feature extraction part of the network.

4. Experimental Results
4.1. Synthetic AV Dataset

For training and evaluation, a widely used benchmark Grid cor-
pus [16] was randomly mixed with non-stationary noises from
the 3rd CHiME challenge (CHiME 3)[19], consisting of bus,
cafeteria, street, and pedestrian noises, for SNRs ranging from
-12dB to 12dB with a step size of 3dB. The dataset was divided
into 21, 4 and 8 speakers for training, development and evalua-
tion respectively. All utterances from each speaker were used in
the training, development and evaluation set. To avoid the dom-
inance of audio modality during multimodal training, 25% of
the utterances were mixed with speech from the same speaker.
Note that the VISION corpus cannot be used for training SE
systems, since a corpus mainly consisting of noisy recordings
and a clean reference signal is required for computing the IBM
and training the DNN. Hence, a synthetic AV dataset (GRID +
CHiME 3) was used here.

4.2. Preprocessing

Audio: The audio signals were resampled at 16 kHz and a
mono-channel used for processing. The resampled audio sig-
nals were segmented into 65 milliseconds (ms) frames and 20%
increment rate. A hanning window and STFT were applied to
the segmented audio to produce a 526-bin magnitude spectro-
gram.
Video: The speakers lip images were extracted out of the 25 fps
Grid corpus video using a minified dlib [21] model optimised
for extracting the lip landmarks. A lip-centred region of aspect
ratio 1:2 was extracted using lip landmark points. The extracted
region was converted to grey scale and resized to 40 pixels x
80 pixels. Note that the lip sequences were extracted at 25 fps
while the audio features were extracted at 75 VPS.

4.3. Experimental Setup

The DNN was trained using TensorFlow library and NVIDIA
Titan Xp GPUs. A subset of speakers from Grid CHiME
3 corpus (as described in section 4.1) were used for train-
ing/validation of the neural network. When a missing visual
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frame was encountered, an array of zeros was used. The net-
work was trained to minimise binary cross-entropy using back-
propagation with the Adam optimiser [22] for 50 epochs. Early
stopping was used if the validation error stopped decreasing af-
ter 5 epochs. Note that no thresholding was applied to the sig-
moidal outputs of the network i.e. the sigmoidal outputs were
considered as the predicted mask.

4.4. Objective testing using a Synthetic AV Dataset

The Perceptual Evaluation of Speech quality (PESQ) method
[23] was used for an objective evaluation of the resynthesised
speech. Specifically, PESQ was used to evaluate the speech
quality computationally. A linear combination of the average
disturbance value and the average asymmetrical disturbance
values between a reference signal and modified signal were
used to calculate PESQ scores ranging from [−0.50, 4.50], in-
dicating the minimum and maximum reconstruction quality.
The PESQ results for spectral subtraction (SS), linear mini-
mum mean square error (LMMSE), CochleaNet [10], A-only,
AV and Oracle mask are depicted in Fig. 4. It can be seen that
the AV model significantly outperformed SS, LMMSE, A-only,
and CochleaNet model at low SNRs. Specifically, at -12dB, the
AV model achieved a PESQ score of 1.42 compared to 1.14,
1.22, 1.29, and 1.34 achieved by the SS, LMMSE, A-only and
CochleaNet models respectively. On the other hand, at 6dB,
A-only and AV models achieved PESQ scores of 1.78 and 1.79
compared to 1.62, 1.72 and 1.81 achieved by SS, LMMSE and
CochleaNet respectively. It can be seen that, at low SNR, the
AV model performs better than the A-only model and other

state-of-the-art approaches. However, at higher SNRs the per-
formance of A-only and AV models is similar to other state-
of-the-art approaches. Note that the VISION corpus cannot
be used for objective evaluation of SE systems, since a corpus
mainly consisting of noisy recordings and a clean reference sig-
nal is required for objective evaluation.

4.5. Subjective listening tests using the VISION Corpus

In order to assess the effectiveness of the proposed AV frame-
work, subjective listening tests were conducted with self-
reported normal-hearing listeners in terms of MOS, using the
real noisy VISION corpus. The listeners were presented with
25 randomly selected, enhanced speech utterances and were
asked to rate the resynthesised speech on a scale of 1 to 5. The
rating choices were: (1) - Very Annoying (Bad), (2) - Annoy-
ing (Poor), (3) - Slightly Annoying (Fair) (4) Perceptible but
annoying (Good), (5) - Perceptible (Excellent). The proposed
AV baseline was compared with A-only DNN, SS and LMME
methods. A total of 12 listeners took part in the subjective eval-
uation sessions. Fig. 5 shows the box plot of listeners’ MOS rat-
ings when the noisy speech from VISION is enhanced using the
SS, LMMSE, CochleaNet [10], A-only DNN and AV DNN. It
can be seen that the AV baseline outperforms the A-only model,
SS, and LMMSE based SE methods. The results demonstrate
the ability of the proposed baseline to generalise in real noisy
settings including reverberations caused by multiple competing
background sources. In addition, the subjective test results re-
veal that an AV model trained on a synthetic mixtures of clean
speech and noise generalises well to a real noisy corpus.

5. Conclusions
The VISION corpus1 provides real noisy binaural AV data
consisting of speech signals reverberantly mixed with multiple
competing noise sources. The corpus will enable development
of robust speech enhancement systems that can generalise to a
large number of speakers, multiple competing noises and imper-
fect visual inputs. The corpus can serve as a test and develop-
ment benchmark for AV signal processing applications includ-
ing speech enhancement/separation, speech recognition, and lip
reading. By making this corpus publicly available, we aim to
promote AV and multimodal speech processing research and ap-
plications. In addition, we have shown that the proposed base-
line DNN trained on a synthetic mixture of GRID and CHiME
3 noises generalises well on the VISION corpus even though
there is not much overlap in the GRID and VISION vocabular-
ies. In future, we intend to extend the VISION corpus with a
greater variety of speakers and noisy environments. In addition,
we intend to further evaluate the VISION corpus for binaural
speech enhancement applications.
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J. Mariéthoz, J. Matas, K. Messer, V. Popovici, F. Porée et al.,
“The banca database and evaluation protocol,” in International
conference on Audio-and video-based biometric person authenti-
cation. Springer, 2003, pp. 625–638.

[15] B. Lee, M. Hasegawa-Johnson, C. Goudeseune, S. Kamdar, S. Bo-
rys, M. Liu, and T. Huang, “Avicar: Audio-visual speech corpus in
a car environment,” in Eighth International Conference on Spoken
Language Processing, 2004.

[16] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-
visual corpus for speech perception and automatic speech recog-
nition,” The Journal of the Acoustical Society of America, vol.
120, no. 5, pp. 2421–2424, 2006.

[17] A. Stupakov, E. Hanusa, J. Bilmes, and D. Fox, “Cosine-a corpus
of multi-party conversational speech in noisy environments,” in
2009 IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2009, pp. 4153–4156.

[18] C. Richey, M. A. Barrios, Z. Armstrong, C. Bartels, H. Franco,
M. Graciarena, A. Lawson, M. K. Nandwana, A. Stauffer, J. van
Hout et al., “Voices obscured in complex environmental settings
(voices) corpus,” arXiv preprint arXiv:1804.05053, 2018.

[19] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third
‘chime’speech separation and recognition challenge: Dataset, task
and baselines,” in Automatic Speech Recognition and Understand-
ing (ASRU), 2015 IEEE Workshop on. IEEE, 2015, pp. 504–511.

[20] E. Rothauser, “Ieee recommended practice for speech quality
measurements,” IEEE Trans. on Audio and Electroacoustics,
vol. 17, pp. 225–246, 1969.

[21] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of
Machine Learning Research, vol. 10, pp. 1755–1758, 2009.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[23] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra,
“Perceptual evaluation of speech quality (pesq)-a new method for
speech quality assessment of telephone networks and codecs,” in
2001 IEEE International Conference on Acoustics, Speech, and
Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 2.
IEEE, 2001, pp. 749–752.

4525


