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Abstract

We consider the problem of speech modeling in speech en-
hancement. Recently, deep generative approaches based on
variational autoencoders have been proposed to model speech
spectrograms. However, these approaches are based either on
hierarchical or temporal dependencies of stochastic latent vari-
ables. In this paper, we propose a generative approach to
speech enhancement based on a stochastic temporal convolu-
tional network, which combines both hierarchical and temporal
dependencies of stochastic variables. We evaluate our method
with real recordings of different noisy environments. The pro-
posed speech enhancement method outperforms a previous non-
sequential approach based on feed-forward fully-connected net-
works in terms of speech distortion, instrumental speech quality
and intelligibility. At the same time, the computational cost of
the proposed generative speech model remains feasible, due to
inherent parallelism of the convolutional architecture.

Index Terms: speech enhancement, stochastic temporal convo-
lutional networks, generative model, variational inference.

1. Introduction

Speech processing systems such as mobile phones, VoIP, tele-
conferencing systems, speech recognition, and hearing aids re-
quire improving speech quality and intelligibility [1]. Single-
channel speech enhancement aims at recovering a clean speech
signal from a mixture which can contain speech and additive
noise [2]. In traditional speech enhancement, Bayesian esti-
mators are often used to estimate speech coefficients [3], and
speech parameters such as the speech power spectral density
[4], the noise power spectral density [5], and the phase [6].

Besides Bayesian estimators, a Bayesian generative model
of the observed signal can be built based on available knowl-
edge about its production process [7]. The resulting probabilis-
tic speech enhancement methods aim to mimic the hidden ran-
dom process of speech and may be used to generate artificial
data that resembles the properties of a given dataset.

Several speech enhancement methods combine concepts of
Bayesian inference and deep learning, e.g. [8—10]. These ap-
proaches make use of generative models, in particular the varia-
tional autoencoder (VAE) [11,12]. Similar to methods based on
denoising autoencoders [13, 14], VAE-based methods are also
capable of denoising speech spectrograms by using stochastic
latent variables, which are hierarchically arranged in a top-down
fashion. Although both achieve good performance compared
against traditional speech enhancement methods, most of them
only reconstruct single spectrogram frames without modeling
temporal dependencies.
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Recently, a generative model called stochastic temporal
convolutional network (STCN) was proposed which can simul-
taneously capture temporal dependencies of variable-length se-
quences and learn correlations between output variables [15].
The STCN uses a top-down hierarchy of stochastic latent vari-
ables which are conditioned on deterministic representations
computed bottom-up. The deterministic representations corre-
spond to dilated convolutions of a temporal convolutional net-
work (TCN) [16]. Lateral shortcut connections between the de-
terministic and latent variables allow higher levels of the latent
hierarchy to focus on more abstract invariant features [17]. The
network architecture is capable of generating high-quality syn-
thetic samples and achieves state-of-the-art log-likelihoods in
speech synthesis. However, to our best knowledge, STCNs have
not been applied in speech enhancement yet.

In this work, motivated by the aforementioned advantages,
we propose a generative approach to speech enhancement us-
ing an STCN as a speaker-independent speech model to esti-
mate the variance of clean speech. The estimation of the noise
variance, on the other hand, is based on a non-negative matrix
factorization (NMF) [18, 19]. We compare the proposed con-
volutional approach to a non-sequential approach based on a
feed-forward fully-connected architecture using the same NMF
parameter optimization algorithm [10].

The rest of this paper is organized as follows: in Section 2
we introduce a general speech enhancement method based on
speech and noise variance estimation. Section 3 describes deep
generative speech models based on variational inference. The
novel STCN architecture is introduced in Section 4 followed by
the evaluation in Section 5.

2. Speech Enhancement

The general goal of single-channel speech enhancement is de-
fined as recovering a speech signal from an observed signal in-
volving interfering sound sources or reverberation. For this pur-
pose, a common approach consists in estimating the speech and
noise variances in order to reconstruct the clean speech signal.

2.1. Model

In the time-frequency domain using the short time Fourier trans-
form (STFT), the mixture signal y¢¢ € C is the sum of the clean
speech sy; € C and the noise ny; € C, such that
Yt = Sft + Ny, (€Y
for every frequency bin f € {1,...,F} and time frame ¢ €
{1,...,T}, where F denotes the number of frequency bins
and 7" the number of time frames of the utterance. The signals
syt and ny, are modeled as mutually independent circularly-
symmetric complex Gaussian random variables,
Sft CN(Oa Ui,ft)v

nge ~ CN(0,00 1), )
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where CA (i1, 0% ) denotes a complex Gaussian distribution with
mean ;¢ and variance 2. Under a local stationary assumption,
the variances af, s+ and crflﬂ ¢+ Tepresent the short-time power
spectral density of sy; and ny¢, respectively [20]. Given the
noisy mixture, clean speech coefficients can be estimated in the
minimum mean square sense using the Wiener estimator
&3 51

Sft = Yrt 3

=2 ~2
Gs,ft + U7L,ft
where &f, ¢ and 6,21, 1+ are the estimated variances using the cor-
responding signal variance models as described next.

2.2. Signal variance models

NMF is a popular choice for modeling signal variances based on
previously trained clean speech spectra [18]. However, it is lim-
ited in its modeling capacity due to the linear parametrization
of the variances. Therefore, we use a non-linear deep gener-
ative model for speech variance estimation which depends on
stochastic latent variables. The noise variance, on the other
hand, is estimated based on an untrained NMF noise model.

2.3. Robust mixture model

In order to provide some robustness with respect to the time-
varying loudness of different speech signals, the mixture model
in Eq. (1) is extended with a frequency-independent but time-
varying gain g; € R [10], such that

Yrt = /9t Sft + Ny “4)

3. Generative Speech Models
3.1. Variational Autoencoders

With the original VAE framework [11, 12], speech power coef-
ficients xy; = |ss¢|? are created by a random process, involv-
ing an unobserved random variable z; € R”. This process is
shown in Fig. la and consists of two steps: first a value z%“
is drawn from a prior probability distribution p(z:) as the i-th

sample, and second a power spectrogram frame Xi” € ]Ri is
generated from a conditional probability distribution pg(x¢|z:)
which is also called generative distribution.

In variational inference, a recognition model gy (z¢|x¢) is
introduced as an approximation to the intractable true posterior
p(z¢|x¢) [21]. All distributions are modeled as neural networks
and its parameters 6 and ¢ are jointly optimized maximizing
the variational lower bound on the marginal log-likelihood for a
given spectrogram frame

log p(x\”) > — Dxe(gs(zex{") || p(21))
+E

ag(zt|x

i 5)
§i>)[105299(x§ |z.)],

where Dk, denotes the Kullback-Leibler divergence between
the approximate posterior g4 (z¢|x\”) and the prior probability
distribution p(z:) which is commonly chosen to be a standard
Gaussian distribution with zero mean and unit variance. The
second term in Eq. (5) is an expected reconstruction error and
requires estimation by sampling.

The statistical properties of clean speech, which are learned
by the generative model during training, can be used to estimate
the distribution of the noisy mixture coefficients ys.. Since
speech and noise signals are supposed to be mutually indepen-
dent given the latent variable z;, we have

Yre|ze NCN(Oygtﬁg,ft(Zt)+6Z,fz)- (6)
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(a) VAE

(b) VRNN

(c) STCN

Figure 1: Generative models: (a) the variational autoencoder
(VAE), (b) the variational recurrent neural network (VRNN),
and (c) the stochastic temporal convolutional network (STCN).
Circles are stochastic variables, squares are deterministic vari-
ables, and gray boxes represent the observed sequence.

Straightforward maximum likelihood estimation of Eq. (6)
is intractable due to the non-linear relation between the speech
variance and the latent variables. However, a Monte Carlo ex-
pectation maximization (MCEM) algorithm can be employed
which iteratively optimizes the NMF noise parameters and the
time-varying gain g: using a block-coordinate approach [10].
Samples of the latent variable are drawn from the approxi-
mate posterior distribution using the random walk Metropolis-
Hastings algorithm [22].

3.2. Temporal dependencies

In the VAE framework [11, 12], the generative model does not
consider temporal dependencies of sequential data. Thus, we
introduce the variational recurrent neural network (VRNN) as a
common deep generative model capable of modeling the tem-
poral dependencies by introducing a deterministic hidden state
h; € R¥ which is updated in a recurrent fashion [23]. The gen-
eration of new samples and the recurrence of the hidden state is
illustrated in Fig. 1b.

VRNNs have an infinite internal memory due to occurring
feedback loops. As we are interested in modeling finite length
phonemes, this infinite internal memory may be seen as a con-
ceptual disadvantage. Furthermore, due to the necessary back-
propagation through time, recurrent network architectures are
rather slow to train and may also suffer from the vanishing gra-
dient problem [24].

4. Stochastic Temporal Convolutional
Networks

The STCN is another generative model capable of modeling the
joint probability distribution of variable-length sequences. For
this purpose, the architecture employs two main modules: 1)
a TCN with deterministic representations computed bottom-up;
and 2) a stochastic latent variable hierarchy with top-down de-
pendencies, as illustrated in Fig. 1c.

4.1. Temporal convolutional network

In the TCN, dilated causal convolutions are applied over the
input sequence x to compute a set of deterministic representa-
tionsd = {d*',...,d"} where L is the total number of stacked
layers with corresponding sequences d' = (d},...,d%) and
d! € RP'. The computation of the deterministic representa-
tions is bottom-up and recursively defined as d} = f(d!™?!)
starting with d° = x. The function f is a series of transfor-
mations containing residual connections, dilated convolutions,
weight normalization [25], ReLUs, and spatial dropout [26].



Using larger dilation factors in the convolution enables a de-
terministic representation at higher levels to represent a wider
range of inputs, thus effectively expanding the receptive field
compared to a standard convolution. Therefore, contrary to
VRNNSs, the STCN has the advantage to accurately set a de-
sired receptive field size, which may be useful for the task of
speech enhancement. The overall receptive field size is given as
(k —1)(2% — 1) with filter size k and can be set in line with the
typical length of phonemes, or in line with the temporal inte-
gration time of the human auditory system, which has an upper
bound of a few hundreds of milliseconds [27].

Furthermore, residual and skip connections allow local in-
formation to propagate through the network while avoiding the
vanishing gradient problem [28,29].

4.2. Stochastic latent variable hierarchy

Stochastic latent variables are arranged in correspondence to
the TCN layers. Thus, there also exists a set of random vari-
ables z = {z',...,z"} with sequences z' = (z!,...,z%)
and z! € R# which capture temporal dependencies at different
time scales. The decoupling of deterministic and stochastic lay-
ers is shown in Fig. 2. The stochastic latent variable hierarchy
can be seen as a modular add-on for any temporal convolutional
network architecture.

4.3. Inference

The recognition model of the STCN relies on a top-down de-
pendency of the latent variables, as illustrated in Fig. 2. As
a result, the parameters of the approximate posterior for each
latent layer [ are computed by

@O +1 4l
[I:Lt,q, l }: f%L)(ZtL 7dt)7
q (dt )7

forl € [1,L — 1] @
forl =1L

where {f{"}1—1.. 1 is a set of neural networks consisting of
stacked layers of 1D convolutions with kernel size 1.

This is contrary to ordinary VAEs, where the inference is
defined as a bottom-up process. Furthermore, the mean ﬂi,q
and the diagonal variance entries \Afé’q are subsequently cor-
rected by precision-weighted addition [17], such that

H’t,q Vi,q(“t q(Ai q)72
. 1
SCEEaCH

+ “i,p(vlt,p)72)a
(®)

— 90
») 7

where ui,p and viyp are the parameters of the prior distribution
which is described in Sec. 4.4.
Finally, the approximate posterior distribution of the set of

latent variables z; = {z;,...,z} conditioned on the set of
deterministic representations d; = {dtl, ...,df } at time step ¢
is given as

L—-1
q(z:|ds) = q(z¢'|df) [ ] a(ztlz:™, db), ©)
=1

where each distribution of every latent layer [ is modeled as a
multidimensional Gaussian N (p1t ,, diag(vi ,)).
4.4. Prior distribution

The prior distribution of the set of latent variables z; at time
step ¢ depends on the set of deterministic representations d¢—1
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‘ Xt—3 ‘ Xt—2 ‘ Xt—1 ‘ Xt ‘

Figure 2: Computational graph of the inference based on the
prior and the approximate posterior distribution.

of the previous time step and is layer-wise factorized as

p(ze|di—1) = p(z; ‘dt 1 H Zt|zt+1 d;_ 1);

(10)

where each distribution of every latent layer [ is modeled as
C e . . 1 . 1

a multidimensional real-valued Gaussian N '(p; ,,, diag(vs p))

with mean and diagonal variance entries

= {fé”(zi“,dé_o,

[ 1 Vl fOrlG[l,L—l]
S PRI C T

11
forl =L, an
and the set of neural networks { f;(yl)}zzl,m, 1, consisting of
stacked layers of 1D convolutions with kernel size 1.

4.5. Observation model

The final prediction of the clean speech coefficients 5y, given
the latent variable z; is modeled as

N A2

Stlze ~ CN(0,{07%,c(2)} 1)) (12)
where 6'3 ft RP — Ri represents a multidimensional non-
linear function modeled by stacked TCN layers. In order to
take all latent variables into account, we use the concatenation
of samples from all latent layers z; = (z{ - - - z{), which takes
inspiration from recent convolutional architectures [30].

4.6. Learning objective

The learning objective of the STCN is similar to Eq. (5), namely
optimizing the variational lower bound on the log-likelihood at
time step ¢, resulting in the loss function

L(x¢)

Using the factorizations from Eq. (9) and (10), the regular-
ization term becomes

= L5 (x¢) 4+ L5 (x4). (13)

L (x) =
L—1

+ DB e [De(a(ztlz ™ d) [ platlz ™ di )],
=1

D (q(zf|df

) || p(z¢ |di-y)) (14)

where the expectation over the latent variables zi“ is approx-

imated using the reparameterization trick [11]. The Kullback-
Leibler divergences can be calculated analytically since all ap-
pearing distributions are diagonal multivariate Gaussians.



The output of &f’t (z+) also represents the estimated short-
time power spectral density X; at frame ¢, therefore the recon-
struction loss is defined as

econ X + €
LN (%t) = Eg(zyxe,) [(log —— (15)

2
o3 (2e) +6>

where the expectation is approximated using the reparameteri-
zation trick and e is numerically motivated in order not divide
by zero.

5. Evaluation

In this section, we compare the performance of the proposed
STCN approach with a non-sequential VAE approach [10]. We
assess the performance in terms of speech distortion, speech
intelligibility, and speech quality.

Very recently Leglaive et al. proposed a speech enhance-
ment method based on VRNNSs [31]. However, their approach
is based on a different optimization algorithm than in the non-
sequential VAE and the STCN considered here, which would
make a direct comparison of the approaches difficult.

We also refrain from comparing with the other popular gen-
erative speech model which is based on generative adversarial
networks [8], because its training needs clean and noisy speech
pairs. Thus, the model is restricted to a limited set of noise types
which is not the case in our approach. Furthermore, the num-
ber of learnable parameters differs by two orders of magnitude
compared to the STCN approach.

5.1. Dataset

As training data we use approximately 25 hours of clean speech
from the “si_tr_s” subset of the Wall Street Journal (WSJO)
dataset [32]. For testing we use 651 synthetic mixtures corre-
sponding to approximately 1.5 hours of noisy speech. The clean
speech signals are taken from the “si_et_05” subset of WSJO (8
unseen speakers), and the noise signals from the “verification”
subset of the QUT-NOISE dataset [33]. Each mixture is cre-
ated by uniformly sampling a noise type among “cafe”, “home”,
“street”, “car” and a signal-to-noise ratio (SNR) among -5, 0, 5
dB. All signals have a sampling rate of 16 kHz.

5.2. Hyperparameter settings

Following the baseline method, the STFT is computed using
a 64 ms sine window with 75% overlap, resulting in a frame
period of 16 ms and F' = 513 unique frequency bins.

The re-implementation of the non-sequential VAE follows
the same hyperparameter setting in [10]. Both the encoder
and decoder consist of a 128-dimensional fully-connected feed-
forward representation layer before mapping to a latent layer of
dimension 16, resulting in 171,297 learnable parameters.

For the STCN we use L = 4 layers and a filter size k = 2
which results in a receptive field of 240 ms. The deterministic
representations have dimensions [64, 32, 16, 8], whereas the la-
tent layers have dimensions [32, 16, 8, 4]. The networks which
calculate the parameters of the approximate posterior and the
prior distribution in each layer, f;l) and f;@ respectively, are
modeled as three stacked layers of 1D convolutions with ker-
nel size 1, mapping from the input dimension Z;11 + D; to
the latent dimension Z;. The observation model uses a TCN
of two layers with dimensionality 256, mapping from input di-
mension Z = Y, Z; to the output dimension F'. All vari-
ances in the latent layers are clamped between 0.001 and 5 and
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Method | SI-SDR (dB) ESTOI POLQA
VAE[I10] | 3.74+0.21 | 0.58£0.01 | 1.83 £ 0.03
STCN | 4.48-+£0.30 | 0.66+0.01 | 2.20 + 0.04
Mixture | 0.54+0.31 | 0.65 £ 0.01 | 2.26 = 0.05

Table 1: Average results and confidence intervals

dropout is set to 0.2. The total number of learnable parameters
is 325,497 which is less than factor two compared against the
non-sequential VAE.

We use the Adam optimizer with standard configuration and
a learning rate of 102 [34]. For the VAE, we set the batch size
to 128, whereas for the STCN to 16. The training takes about
100 epochs until the loss converges. In the training of the STCN
we gradually turn on the KL-term £X"(x;) within the first 50
epochs, in order not to collapse into the prior [35].

For the optimization of the NMF noise parameters and the
time-varying gain, we follow the MCEM algorithm in [10] and
set the rank of the NMF to 8. The Metropolis-Hastings algo-
rithm takes the same parameters as in the baseline method.

5.3. Results

To measure performance we use the scale-invariant signal-to-
distortion ratio (SI-SDR) [36], raw scores of the extended short-
time objective intelligibility (ESTOI) with values between 0 and
1 [37], and the perceptual objective listening quality analysis
(POLQA) score with values between 1 and 5 [38].

The average results are shown in Table 1. It may be seen
that the proposed STCN outperforms the VAE by 0.8 dB in
terms of SI-SDR. It is interesting to see that, at the same time,
it also outperforms the VAE in terms of ESTOI and POLQA.

Fig. 3 shows spectrograms Sag = 201og;,(|S|) for an ex-
ample utterance for: a) the mixture signal, b) the corresponding
clean speech, and c) the reconstructed clean speech. It may be
seen that the proposed method covers speech while attenuating
additive noise. Code and audio examples are available online'.

(a) Mixture

(b) Clean

(¢) Reconstructed

Figure 3: Magnitude of frequency bins in dB over time frames
of an example utterance for: (a) the mixture signal, (b) the cor-
responding clean speech, and (c) the reconstructed speech.

6. Conclusion

In this work, we proposed a generative speech model based on
an STCN for speech enhancement. This approach combines
both hierarchical and temporal dependencies of stochastic vari-
ables. We evaluated our approach with real recordings of dif-
ferent noise environments. The proposed approach outperforms
the non-sequential VAE in terms of signal-to-distortion ratio,
and instrumental speech quality and intelligibility.

'https://uhh.de/inf-sp-stcn2020
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