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Abstract
We propose a novel noise-aware memory-attention network
(NAMAN) for regression-based speech enhancement, aiming
at improving quality of enhanced speech in unseen noise con-
ditions. The NAMAN architecture consists of three parts, a
main regression network, a memory block and an attention
block. First, a long short-term memory recurrent neural network
(LSTM-RNN) is adopted as the main network to well model
the acoustic context of neighboring frames. Next, the memory
block is built with an extensive set of noise feature vectors as
the prior noise bases. Finally, the attention block serves as an
auxiliary network to improve the noise awareness of the main
network by encoding the dynamic noise information at frame
level through additional features obtained by weighing the ex-
isting noise basis vectors in the memory block. Our experi-
ments show that the proposed NAMAN framework is compact
and outperforms the state-of-the-art dynamic noise-aware train-
ing approaches in low SNR conditions.
Index Terms: attention mechanism, memory block, noise-
aware training, LSTM-RNN, speech enhancement

1. Introduction
Single-channel speech enhancement (SE) is a widely studied
problem in signal processing which aims at enhancing noisy
speech to improve speech quality and intelligibility [1]. Notable
conventional algorithms include spectral subtraction [2, 3],
Wiener filtering [4, 5], MMSE estimator [6, 7], and OM-LSA
speech estimator [8]. In recent years, most supervised SE tech-
niques have been based on deep neural network (DNN) archi-
tectures [9], which show strong regression capabilities of map-
ping from the input noisy log-power spectra (LPS) features to
the target clean LPS features. Although DNN-based SE algo-
rithms have achieved considerable success, more and more re-
search efforts are made to further improve the speech enhance-
ment performance.

On the one hand, due to the fully-connected structure, DNN
cannot fully utilize the relationship between the neighbouring
frames under long-term acoustic contexts even with the help
of frame expansion [9, 10]. As an alternative, long short-term
memory recurrent neural network (LSTM-RNN) makes a full
use of the information between the current and the previous
frames by adding the memory cells and a series of “gates” to
determine the retention and deletion information of previous
frames [11, 12]. LSTM-RNN also achieves better generaliza-
tion at low signal-to-noise ratios (SNRs) than DNN [13, 14].
More recently, inspired by the success of attention models in
various sequence-to-sequence learning tasks [15, 16, 17], an at-
tention mechanism can also be added to LSTM-RNN [18] or
bidirectional long short term memory (BLSTM) [19] for the SE

task. It is proved to have a better generalization ability. Besides
LSTM-RNN, other powerful structures, such as convolutional
neural network (CNN) [20], convolutional-recurrent neural net-
work (CRNN) [21], generative adversarial network (GAN) [22],
have also been proposed.

On the other hand, it is noted that the DNN performance
deteriorates when a mismatch exists between the training and
testing sets [23]. Many noise types have been added to the
training set to resolve this issue in [24], but it cannot always
improve the speech quality. Noise-aware training (NAT) attains
state-of-the-art noisy speech recognition results on the Aurora-4
task [25], and has been applied successfully to speech enhance-
ment. Static noise aware training (SNAT) predicts the noise
information, and appends the same information to each frame
by assuming that the noise signal during the whole utterance is
stationary [10]. However noise is changing greatly in most re-
alistic environments. Accordingly dynamic noise aware train-
ing (DNAT) estimates the noise signal in a dynamic manner,
and is able to deal with the non-stationary scenes [26]. Further
improvements and deformations, such as post-processing, turn-
ing full-band features into sub-band features and interpolating
SNAT & DNAT [27], are considered as DNAT extensions. Sim-
ilarly, an SNR-aware model is adopted to predict SNR levels
[28], and speaker-aware denoising autoencoder (SaDAE) pre-
dicts the speaker identities [29]. Other studies in [30] and [31]
use the framework of denoising auto-encoders (DAE) to learn
the transformation, but follow almost the same idea as DNAT.

In this paper, we propose a novel noise-aware memory-
attention network (NAMAN) for single-channel speech en-
hancement. Unlike the way attention model embedded into
the backbone of the neural network structure [18], we utilize
the attention mechanism in a side branch, which is designed to
learn the similarities between the current frame and the exist-
ing noise basis vectors in the static memory block instead of the
previous frames. The clustered acoustic feature vectors, namely
Mel-frequency cepstral coefficients (MFCCs) of noise signals,
are extracted as the prior noise information and stored in the
memory block. The dynamically predicted noise features are
obtained by combining the weights learned from the attention
mechanism and MFCCs in the memory block together, and are
then attached to the noisy features during training. With the help
of memory block, our noise-aware training is carried out jointly
with the process of denoising. This one-stage model training de-
sign significantly simplifies the complicated two-stage design of
DNAT [26]. Moreover, DNAT can achieve a good performance
over DNN, but when it turns to LSTM-RNN, which has a more
powerful modeling ability on the acoustic context of neighbor-
ing frames, the performance gain is less significant. The exper-
imental results show that our NAMAN model can still maintain
significant improvements under the LSTM-RNN setting.
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2. Proposed Deep NAMAN Architecture
Figure 1 illustrates the NAMAN structure consisting of the main
network, the memory block and the attention block. The key of
the proposed framework is to generate predicted features incor-
porating the noise information embedded in the current noisy
speech frame by a weighted combination of the noise basis vec-
tors in the memory block. With the help of the attention mech-
anism and LSTM-RNN, the predicted noise vectors can pro-
vide useful information for speech enhancement. The details
are elaborated in the following subsections.

Figure 1: The structure of NAMAN, including the main network,
the attention block and the memory block.

2.1. Main Speech Enhancement Regression Network

The main network has two effects on the whole framework: de-
noising and exchanging information with the attention block.
Denoising aims to remove the noise from noisy speech to get
the enhanced speech. On the other hand, the attention block
needs the noise information to pick up the most relevant vectors
from the memory block. With the layers increasing, the noise is
removed gradually. Here, we append the output from the atten-
tion block as auxiliary noise information to the input features to
be fed into the NAMAN input layer for subsequent processing.

Given a noisy utterance with T frames, the input noisy LPS
features are represented by

X = {x1, x2, ..., xT }, (1)

where xt denotes the noisy feature vector at frame t. Here
LSTM-RNN is adopted as the main network for its congeni-
tal advantage of sequence representation and temporal contexts
acquisition. A detailed calculation in the LSTM-RNN cells is
implemented as follows:

it = σ(Wxixt + Whiht−1 + bi), (2)

ft = σ(Wxfxt + Whfht−1 + bf ), (3)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wxcxt + Whcht−1 + bc), (4)

ot = σ(Wxoxt + Whoht−1 + bo), (5)

ht = ot ⊗ tanh(ct), (6)

where i, f, o represent the “input gate”, “forget gate” and “output
gate”, respectively. c is the cell activation vector, and h is the
hidden vector. W and b stand for the weight matrices and bias
vectors from the cell to gate. σ is the logistic sigmoid function,
and ⊗ denotes element-wise multiplication. The corresponding
outputs of the l-th hidden layer of the main network are:

Hl = {hl1, hl2, ..., hlT }, (7)

where hlt denotes the output of the l-th hidden layer at frame t.

2.2. Noise-Basis Memory Block

The memory block provides the prior noise information for the
attention block. It consists of an extensive set of basis vectors,
which contain rich noise information and can represent a new
noise type by weighted combination. Moreover, the vectors are
bound to be quite distinguishable from each other by its corre-
sponding noise type. In view of the random and abrupt nature
of noise signals, we adopt the frame-level MFCC features ex-
tracted from noise signals.

The procedure of memory block generation is illustrated in
Algorithm 1. First, we need to collect different types of noise
waveforms from different environments, such as fax machine
noises, car idling, footsteps, paper rustling, rain, animal noises,
etc. Second, we cut the noise waveforms into frames and extract
the MFCC features. Next, based on those noise MFCC feature
frames, we can cluster them to form a compact set of K distin-
guishable noise basis vectors, using a K-means algorithm with
a cosine distance shown below:

dcos(ni, nj) =
ni · nj

||ni|| · ||nj ||
, (8)

where dcos(ni, nj) is exactly the cosine distance between ni and
nj , and ni stands for the i-th noise feature vector. Finally, the
K cluster centers are stored as the memory block defined as:

M = {m1,m2, ...,mK}, (9)

where mk is the k-th noise basis vector.

Algorithm 1 Procedure of Memory Block Generation.
Step1: Noise Sources Collection
collect different noise types as many as possible.
Step2: Feature Extraction
extract frame-level MFCC features from all noise waveforms.
Step3: Clustering
luster all the noise feature vectors into K clusters.
Step4: Memory Block Generation
form the memory block M with the K cluster centroids.

It is noted that the memory vectors are static, and should
not be updated during either the training or testing step.

2.3. Memory-Aware Attention Block

The attention block is another important part of the whole archi-
tecture, it focuses on selecting the basis vectors from the mem-
ory block, which are the most relevant to the noise information
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embedded in the current speech frame [15]. To gather accu-
rate information for the attention model, not only placing the
attention block close to the input, but also performing frame
expansion on the input features as follows:

ft = [xt−τ , ..., xt−1, xt, xt+1, ..., xt+τ ], (10)

where ft stands for the feature vector after frame expanding at
frame t, and τ controls how many history and future frames
are involved. Frame expansion is just a simple step which can
avoid overfitting and really contribute to collecting noise and
responding to mutation of signals.

The attention model takes ft and mk as input and combines
them to a vector with the learned weights. A small neural net-
work is designed to learn the similarity scores between ft and
mk, which can be defined by the general formula [32]:

et,k = m>k Waft, (11)

where et,k scores the similarity between ft and mk. The matrix
Wa contains the the attention model parameters. The attention
value αt,k is then calculated by ft and mk through a softmax
operation, as shown in the dashed arrows of Figure 1:

αt,k =
exp(et,k )∑K
i=1 exp(et,i )

. (12)

After normalization, the value αt,k is regarded as a weight,
and multiplied by mk, as shown in the solid arrows of Figure 1:

ct =

K∑
k=1

αt,k mk, (13)

where ct is the predicted noise vector by the attention model at
frame t. So ct is a weighted sum of all the basis vectors mk,
and is then concatenated to the input vector:

x̄t = [xt ct]>, (14)

where the new vector x̄t is fed to the first hidden layer.

2.4. Training and Testing

With the outputs of final LSTM layer shown in Eq. (7), we
adopt a linear layer on top of it to generate the outputs of the
main network, namely, the LPS features of enhanced speech.
Then the parameters of NAMAN are optimized with a minimum
mean squared error (MMSE) criterion:

E =
1

T

T∑
t=1

||̂st − st||22, (15)

where ŝt and st are the t-th LPS feature vectors of estimated
and clean reference utterances, respectively.

In the training stage, the parameters in both the main net-
work and the attention block are jointly optimized. In the testing
or enhancement stage, the predicted noise vector concatenating
to the input of the main network can be obtained by the atten-
tion mechanism for each frame to improve the performance of
output enhanced speech.

3. Experiments and Result Analysis
3.1. Database

In order to improve the generalization capacity of unseen envi-
ronments, 958 noise types including 100 noise types [33], 15
home-made noise types and 843 noise types from Free Sound
part of the MUSAN corpus [34] were selected as the noise
database for training. All 7138 utterances from the training
set of WSJ0 corpus were corrupted with the above-mentioned
958 noise types at six levels of SNRs (-5dB, 0dB, 5dB, 10dB,
15dB and 20dB) to build a 36-hour multi-condition training set
composed of pairs of clean and noisy speech utterances. Ap-
proximately 200 sentences randomly selected from the 36-hour
data set were used as the cross-validation set. Similarly, the
330 utterances from the core test set of WSJ0 corpus were used
to construct the test set for each combination of noise types
and SNR levels (-5dB, 0dB and 5dB). As we only conducted
the evaluation of mismatched non-stationary noise types in this
study, three unseen noise types, namely Buccaneer1, Destroyer
engine and HF channel, were adopted for testing, which were
all collected from the NOISEX-92 corpus [35].

3.2. Experimental Setting

As for the front-end, all the speech waveforms were sampled
at 16kHz, and the frame length was set to 512 samples with
a frame shift of 256 samples. A short-time Fourier transform
(STFT) was used to compute the spectra of each overlapping
windowed frame. Thus, the 257-dimensional LPS features were
produced to train the neural network. Both the input and the
reference feature vectors were normalized by global mean and
variance before feeding into the networks. In the memory block,
the 12-dimensional MFCC features of the noise waveforms in
the training set, with their first and second order derivatives,
were extracted, and were clustered into 500 classes at the frame
level by the K-means algorithm.

For the main network, on top of the input layer there were
2 stacked LSTM layers with projection, each hidden layer had
1024 memory cells and the output layer had 257 units. To make
our predictions more accurate, we expanded the input to the at-
tention block 3 frames forward and backward, respectively. All
the networks were initialized with random weights. The learn-
ing rate for the fine-tuning was set to 0.1 for the first 6 epochs
and declined at a rate of 90% after every 6 epochs. Original
phase of noisy speech was adopted with the enhanced LPS for
the waveform reconstruction.

In this experiment, two other noise-aware models, denoted
as SNAT and DNAT, were used for performance compari-
son. SNAT and DNAT had the same network configurations
as our model, i.e. 2 LSTM hidden layers with 1024 cells per
layer, other model parameters were consistent with “SNAT” and
“DNAT3” in [26]. We also provided the oracle experiment as-
suming the real noise spectrum was known on the test set as the
upper bound, approximatively. The enhancement performance
was assessed by using perceptual evaluation of speech quality
(PESQ) [36] for measuring speech quality, short-time objective
intelligibility (STOI) [37] for measuring speech intelligibility,
and log-spectral distortion (LSD) (in dB) [38] for evaluating
signal differences in the frequency domain.

3.3. Experimental Results

Table 1 lists the average PESQ, STOI and LSD performance
comparison of different models on the test set. “Noisy” de-
notes noisy speech with no processing. “Mapping” represents
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the original LSTM-based regression model using the direct
mapping approach without noise-aware training, “SNAT” and
“DNAT” refer to “SNAT” and “DNAT3” in [26], respectively.
“NAMAN” denotes our proposed approach. “Oracle” means
the real noise spectrum is known [26]. Three low SNRs (-5dB,
0dB, 5dB) are selected where the enhancement task is hard and
necessary to carry out. Both the two improved models (SNAT,
DNAT) outperform the direct mapping system (Mapping) on all
the three measures and SNR levels, and severely underperform
Oracle, which leaves a lot of room to further improve the per-
formance. Besides, NAMAN performs much better than Map-
ping, achieving an average PESQ gain of 0.177 (from 2.093 to
2.27), an average STOI gain of 0.029 (from 0.77 to 0.799) and
an average LSD decrease of 0.635 (from 4.394 to 3.759). NA-
MAN also yields better results than SNAT, which can not well
handle the non-stationary noise types. What’s more, even com-
pared with the powerful model DNAT, NAMAN can also keep
the consistent superiority, which is more obvious for low SNRs,
PESQ improves from 1.683 to 1.828 with the gain of 0.145,
STOI increases from 0.67 to 0.696 with the gain of 0.029 at
SNR=-5dB.

Table 1: Performance comparison on the test set at different
SNRs of the three unseen noise environments, among: Noisy,
Mapping, SNAT, DNAT, NAMAN and Oracle. Ave denotes the
average of three SNRs (-5dB, 0dB and 5dB).

SNR(dB) -5 0 5 Ave

PESQ

Noisy 1.300 1.509 1.783 1.531
Mapping 1.592 2.115 2.572 2.093

SNAT 1.669 2.196 2.606 2.157
DNAT 1.683 2.214 2.635 2.177

NAMAN 1.828 2.304 2.677 2.270
Oracle 2.295 2.681 2.985 2.654

STOI

Noisy 0.596 0.714 0.823 0.711
Mapping 0.650 0.785 0.875 0.770

SNAT 0.667 0.800 0.879 0.782
DNAT 0.670 0.806 0.887 0.788

NAMAN 0.696 0.814 0.887 0.799
Oracle 0.814 0.879 0.924 0.872

LSD

Noisy 15.826 12.228 9.102 12.385
Mapping 4.846 4.395 3.941 4.394

SNAT 4.698 3.992 3.565 4.085
DNAT 4.664 3.755 3.047 3.822

NAMAN 4.554 3.691 3.031 3.759
Oracle 3.666 3.320 2.985 3.324

Figure 2 shows an utterance example corrupted by Buc-
caneer1 noise at SNR=0dB. DNAT successfully removes most
of the noise in noisy speech. NAMAN not only reconstructs
more speech details compared with DNAT (shown in the dashed
rectangular boxes), but also restores more information during
high-frequency bands through the whole fragment (shown in the
dashed oval boxes). Hence NAMAN can obtain higher scores,
which estimates noise by attention mechanism, performs better
in speech restoration and achieves less speech distortions.

Table 2 compares the run-time latency and the model size of
different models. A set of 500 noisy test utterances are selected
randomly and fed to the network to estimate the latency and
model size which are normalized by the corresponding values
of the Mapping model. From the last two rows we can observe
that, for both latency and model size, NAMAN uses only about
a half of those values in DNAT.

Table 2: A comparison among Mapping, SNAT, DNAT and NA-
MAN. NT and NM are the run-time latency and model size,
respectively, normalized by Mapping.

Mapping SNAT DNAT NAMAN
NT 1 1.06 2.06 1.03
NM 1 1.08 2.08 1.03

Figure 2: Spectrograms of an utterance tested on Buccaneer1
noise at SNR=0 dB (from top to bottom): noisy speech, DNAT,
NAMAN, clean speech.

4. Conclusion
In this study, we have proposed a novel noise-aware memory-
attention framework for regression-based speech enhancement.
Compared with the two-stage DNAT model, NAMAN can pre-
dict noise information jointly with the denoising process. Ex-
perimental results show the proposed NAMAN approach con-
sistently achieves better performances in low SNR conditions,
in terms of PESQ, STOI and LSD, than those obtained with
DNAT. Furthermore, NAMAN has the distinctive advantages
of simple structures and better generalization ability on mis-
matched conditions. In future work, we plan to expand our
model with SNR-aware and speaker-aware training, which may
embody complementary capabilities for speech enhancement.
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[3] K. Paliwal, K. Wójcicki, and B. Schwerin, “Single-channel
speech enhancement using spectral subtraction in the short-time
modulation domain,” Speech communication, vol. 52, no. 5, pp.
450–475, 2010.

[4] J. Lim and A. Oppenheim, “All-pole modeling of degraded
speech,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 26, no. 3, pp. 197–210, 1978.

[5] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth
compression of noisy speech,” Proceedings of the IEEE, vol. 67,
no. 12, pp. 1586–1604, 1979.

[6] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude esti-
mator,” IEEE Transactions on acoustics, speech, and signal pro-
cessing, vol. 32, no. 6, pp. 1109–1121, 1984.

[7] Y. Ephraim and D. Malah, “Speech enhancement using a mini-
mum mean-square error log-spectral amplitude estimator,” IEEE
transactions on acoustics, speech, and signal processing, vol. 33,
no. 2, pp. 443–445, 1985.

[8] I. Cohen and B. Berdugo, “Speech enhancement for non-
stationary noise environments,” Signal processing, vol. 81, no. 11,
pp. 2403–2418, 2001.

[9] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study
on speech enhancement based on deep neural networks,” IEEE
Signal processing letters, vol. 21, no. 1, pp. 65–68, 2013.

[10] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression ap-
proach to speech enhancement based on deep neural networks,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 23, no. 1, pp. 7–19, 2014.

[11] D. Servan-Schreiber, A. Cleeremans, and J. L. McClelland,
“Encoding sequential structure in simple recurrent networks,”
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
PSYCHOLOGY, Tech. Rep., 1989.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] F. Weninger, F. Eyben, and B. Schuller, “Single-channel speech
separation with memory-enhanced recurrent neural networks,” in
2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2014, pp. 3709–3713.

[14] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller, “Dis-
criminatively trained recurrent neural networks for single-channel
speech separation,” in 2014 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2014, pp. 577–
581.

[15] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[16] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech recog-
nition,” in 2016 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, 2016, pp. 4945–
4949.

[17] C. Shan, J. Zhang, Y. Wang, and L. Xie, “Attention-based end-
to-end speech recognition on voice search,” in 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4764–4768.

[18] X. Hao, C. Shan, Y. Xu, S. Sun, and L. Xie, “An attention-based
neural network approach for single channel speech enhancement,”
in ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
6895–6899.

[19] M. Ge, L. Wang, N. Li, H. Shi, J. Dang, and X. Li, “Environment-
dependent attention-driven recurrent convolutional neural net-
work for robust speech enhancement,” Proc. Interspeech 2019,
pp. 3153–3157, 2019.

[20] S. R. Park and J. Lee, “A fully convolutional neural network for
speech enhancement,” arXiv preprint arXiv:1609.07132, 2016.

[21] H. Zhao, S. Zarar, I. Tashev, and C.-H. Lee, “Convolutional-
recurrent neural networks for speech enhancement,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2018, pp. 2401–2405.

[22] S. Pascual, A. Bonafonte, and J. Serra, “Segan: Speech
enhancement generative adversarial network,” arXiv preprint
arXiv:1703.09452, 2017.

[23] D. Liu, P. Smaragdis, and M. Kim, “Experiments on deep learning
for speech denoising,” in Interspeech, 2014, pp. 2685–2689.

[24] Y. Wang and D. Wang, “Towards scaling up classification-based
speech separation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 7, pp. 1381–1390, 2013.

[25] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep neu-
ral networks for noise robust speech recognition,” in 2013 IEEE
international conference on acoustics, speech and signal process-
ing. IEEE, 2013, pp. 7398–7402.

[26] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “Dynamic noise aware
training for speech enhancement based on deep neural networks,”
in Interspeech, 2014, pp. 2670–2674.

[27] Q. Wang, J. Du, L.-R. Dai, and C.-H. Lee, “Joint noise and mask
aware training for dnn-based speech enhancement with sub-band
features,” in 2017 Hands-free Speech Communications and Mi-
crophone Arrays (HSCMA). IEEE, 2017, pp. 101–105.

[28] S.-W. Fu, Y. Tsao, and X. Lu, “Snr-aware convolutional neural
network modeling for speech enhancement.” in Interspeech, 2016,
pp. 3768–3772.

[29] F.-K. Chuang, S.-S. Wang, J.-w. Hung, Y. Tsao, and S.-H.
Fang, “Speaker-aware deep denoising autoencoder with embed-
ded speaker identity for speech enhancement,” Proc. Interspeech
2019, pp. 3173–3177, 2019.

[30] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement
based on deep denoising autoencoder.” in Interspeech, 2013, pp.
436–440.

[31] B. Xia and C. Bao, “Speech enhancement with weighted denois-
ing auto-encoder.” in Interspeech, 2013, pp. 3444–3448.

[32] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[33] G. Hu, “100 nonspeech environmental sounds,” The Ohio State
University, Department of Computer Science and Engineering,
2004.

[34] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[35] A. Varga and H. J. Steeneken, “Assessment for automatic speech
recognition: Ii. noisex-92: A database and an experiment to
study the effect of additive noise on speech recognition systems,”
Speech communication, vol. 12, no. 3, pp. 247–251, 1993.

[36] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra,
“Perceptual evaluation of speech quality (pesq)-a new method for
speech quality assessment of telephone networks and codecs,” in
2001 IEEE International Conference on Acoustics, Speech, and
Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 2.
IEEE, 2001, pp. 749–752.

[37] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An al-
gorithm for intelligibility prediction of time–frequency weighted
noisy speech,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 7, pp. 2125–2136, 2011.

[38] J. Du and Q. Huo, “A speech enhancement approach using piece-
wise linear approximation of an explicit model of environmental
distortions,” in Interspeech, 2008, pp. 569–572.

4505


