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Abstract
Audiovisual correspondence learning is the task of acquiring
the association between images and its corresponding audio. In
this paper, we propose a novel experimental paradigm in which
unfamiliar pseudo images and pseudowords in audio form are
introduced to both humans and machine systems. The task is
to learn the association between the pairs of image and audio
which is later evaluated with a retrieval task. The machine sys-
tem used in the study is pretrained with the ImageNet corpus
along with the corresponding audio labels. This model is trans-
fer learned for the new image-audio pairs. Using the proposed
paradigm, we perform a direct comparison of one-shot, two-
shot and three-shot learning performance for humans and ma-
chine systems. The human behavioral experiment confirms that
the majority of the correspondence learning happens in the first
exposure of the audio-visual pair. This paper proposes a ma-
chine model which performs on par with the humans in audio-
visual correspondence learning. But compared to the machine
model, humans exhibited better generalization ability for new
input samples with a single exposure.
Index Terms: Audiovisual correspondence learning, few-
shot learning, multimodal learning, transfer learning, human-
machine comparison

1. Introduction
The fusion of multimodal signals, i.e., signals measured in mul-
tiple domains, has been an area of considerable interest for both
humans [1] and machines [2]. In this paper, we consider a type
of fusion problem that pertains to learning how different modal-
ities correspond to each other. The modalities under considera-
tion are the audio and image domains.

In human cognition, cross-modal correspondence learning
can be defined as the learning of the mapping that observers ex-
pect to exist between two or more features or dimensions from
different sensory modalities (such as the shape of the visual ob-
ject and associated speech phonemes) [3]. Once the learning
is achieved, stimulation in one modality can elicit experiences
in the other sensory modality (for example, sound-color asso-
ciations [4]) which can also extend to behavioral changes and
cross-modal retrieval [5]. However, many questions exist on
how efficient humans are in learning object-audio associations
for previously unknown shapes and sounds. In this paper, we
attempt to highlight the behavioral performance for human sub-
jects in learning cross-modal audio-visual correspondences for
pseudo images and pseudo-words and the ability of humans to
generalize to different orientations and color changes or speaker
changes in the speech data. Past studies have shown that hu-
mans require only a very small number of instances to learn
meanings of new words [6].
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It is therefore of significant interest to question whether ma-
chines can achieve human-level efficiency with limited data. In
machine learning, cross-modal correspondence modeling and
retrieval has received significant attention in recent years, in
particular between domains of text and image [7]. For audio-
visual cross-modal modeling, early work by Zhang et al. [8] fo-
cused on correlation-based modeling. Recent work using deep
learning by Arandjelovic et al. [2] attempted to learn the asso-
ciation between audio and images in an unsupervised manner
using video data. Chrupala et al. [9] performed joint seman-
tic modeling of speech utterances and images and showed that
semantic and form-related information of speech is encoded
across the model hierarchy. Kamper et al. [10] trained a speech
network using soft tags from images for better qualitative per-
formance than a supervised model trained on transcriptions in a
semantic speech retrieval task. Harwath and Glass [11] showed
that a network trained jointly on images and spoken captions
learns to associate segments of the audio and the correspond-
ing semantically relevant regions in the image. Other stud-
ies [12] have also looked at the development of algorithms for
cross-modal data generation. Our work is related to Eloff et
al. [13] who approached multimodal one-shot learning through
unimodal comparisons of the query and matching set with a
support set. In our previous work [14], we explored a rapid
language learning task where human subjects attempt to learn a
set of words from a new language with image supervision. A
machine comparison for this task revealed that machines can
achieve human-level performance for this task on previously
known image classes.

In this paper, we explore a learning paradigm where novel
objects and novel sounds are associated. This novelty is critical
for ensuring a direct human-machine comparison as the nov-
elty guarantees that we are not merely tapping into knowledge
acquired prior to the experiment in humans.

2. Human Experiment
2.1. Stimuli

The objects and labels used are primarily from the Novel Object
and Unusual Name (NOUN) Database [15]. The NOUN dataset
contains 60 novel objects and 173 pseudowords. We used the
60 objects as our novel classes and paired it with a pseudoword
label. The label is a trisyllabic pseudoword generated by com-
bining the original NOUN pseudowords. We conjecture that
spoken pseudowords with one or two syllables are too short
and lack adequate information. The original images from the
NOUN dataset were augmented by performing RGB permuta-
tions, horizontal and vertical flipping, and rotations. For each
object class, 10 such augmented variants of the original image
were added to the stimuli set. The examples of the stimuli used
are given in Fig. 1. We generated 12 audio samples per label
from their synthesized speech, using Google [16], IBM [17],
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Figure 1: Examples of the stimuli used in the experiment.
Columns 3,4,5 show augmented variants of the image corre-
sponding to the audio label.

and Microsoft [18] Text-to-Speech (TTS) systems. These audio
samples had variations as the TTS models with different gen-
der and accents (American English, British English and Aus-
tralian English) were used. An informal listening test of the
files showed no major inconsistencies in pronunciation across
the models.

2.2. Subjects

The participants were Indian nationals with self-reported nor-
mal hearing and vision. Twenty four adults participated in this
study (mean age = 24.08, age span = 22-31). All subjects pro-
vided written informed consent to take part in the experiment
and received monetary compensation. The Institute Human
Ethical Committee of Indian Institute of Science, Bangalore ap-
proved all procedures of the experiment.

2.3. Experimental Setup

The stimuli were randomly divided into 6 blocks with 10 novel
classes in each block. During the experiment, these blocks
appeared in a different random order for different subjects.
Each block was a n-shot learning paradigm of 10 novel objects
(n = 1, 2 or 3). An n-shot learning task means the participant
is exposed to n augmented variants of the stimulus before the
evaluation. There were 2 blocks for each n-shot learning. The
experiment starts with a practice session to familiarize partic-
ipants with the experiment setup. The practice session used 3
objects as stimuli, which are not part of the main experiment.
They were from the Fribbles stimuli set [19], and labels were
sampled from the trisyllabic word pool. Each block in the main
experiment had two phases: learning phase and testing phase.

Learning Phase: In the learning phase, the subjects were
presented with image-audio pairs for each class in the session.
Classes within a session were randomly shuffled. For the two-
shot and three-shot sessions, the 10 classes were presented in
cycles, in a random order within each cycle. No limit was im-
posed on the learning time per sample, or the number of times
the audio clip could be heard. For each subject, we recorded the
total time spent and the number of audio play button clicks on
each sample.

Testing Phase: During the testing phase, the subjects were
asked to perform two tasks: an image retrieval (IR) and an au-
dio retrieval (AR) task. In IR, the subject had to pick the match-
ing image for the given audio sample from a set of 10 image

Table 1: Machine model experiment: Details of the dataset used
for pretraining. The number of samples per class is also given.

Data Train Validation Test
Image 160 16 16

(ImageNet ImageNet ImageNet ImageNet
classes) train val val
Image 60 20 20
(Other 30 Google 10 Google 10 Google
classes) 30 Flickr 10 Flickr 10 Flickr

22 5 5
Speech 10 Google 2 Google 2 Google

(TTS voice) 1 IBM 1 IBM 1 IBM
(English) 11 Microsoft 2 Microsoft 2 Microsoft

choices. In the AR, the subject had to pick the corresponding
audio clip for the given image sample from a set of 10 audio
choices. For each session, both tasks included 10 test cases (as
each block had 10 novel objects to learn). The image and au-
dio samples used in the test phase were augmented versions of
their training counterparts. Further, one-shot learning blocks
had an additional test case for each of the 10 objects showed in
the training phase. In this testing case, the query sample was
the same image/audio sample that appeared during the learning
phase. Hence, the subject had already seen this exact sample
before the evaluation. But the multiple-choice answer options
include augmented versions of samples from the other modality.
This strategy enables us to compare the generalisation capabil-
ity of humans and machines on the one-shot task.

3. Machine Experiments
3.1. Dataset

For pretraining, we use the 655 classes from [14]. These classes
have labels of one-word length. Images are obtained from
the ImageNet database [20], and the Flickr and Google image
repository. The audio recordings of the labels are generated us-
ing the Google, Microsoft [18] and IBM [17] TTS systems.

For the novel object learning task, we use the same 60 novel
classes as in the human experiment. The data split per class, as
(train, test), is (n, 10-n) for images with a total of 10 images
per class. For audio, it is (n, 12-n) with a total of 12 audio
variants per class. Here, n = 1,2 or 3 for n-shot learning.

3.2. Audio-Visual Semantic Network

We use the joint audio-visual model [14] illustrated in Fig. 2.
It consists of audio and image sub-networks which are jointly
trained on the multimodal input.

Audio sub-network: The audio sub-network has two long
short-term memory (LSTM) layers followed by fully connected
(FC) layers. The audio is fed as 80-dimensional bottleneck fea-
tures, from a deep neural network trained for automatic speech
recognition (ASR) on the Switchboard and Fisher corpora [21].
After pretraining, only the final fully connected layer of 576
dimensions is trained on the novel audio labels.

Image sub-network: The image sub-network uses the Xcep-
tion network [22] which is trained on the ImageNet classes. We
use the 2048-dimensional pre-softmax layer from the Xception
network as the input representation. This input is then mapped
to a 576-dimensional latent space using a fully connected layer
which is trained jointly with the audio sub-network.
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Figure 2: Joint audio-visual semantic network with triplet loss (eg. with image as anchor). Yellow indicates the layers that are trained.

Table 2: Machine experiment: Top-k image and audio retrieval
Accuracy over pretraining classes. Chance acc. - 0.15%

Retrieval Top-1 Top-5 Top-10
Image 72.40 84.17 87.10
Audio 70.46 84.10 87.13

3.3. Training

Pretraining: The 576-dimensional FC layers of the audio
and image subnetworks are trained jointly on 655 pretraining
classes. We use the modified proxy based approach of [23][14]
to train using multimodal input. Similarity is maximized be-
tween the input representation and matching proxy vector, and
minimized against the non-matching proxy vectors. In the first
stage, the proxy matrix and FC layer of the image subnetwork
are trained on the image data. The proxy matrix is then kept
fixed. In the second stage, the FC layer of the audio subnet-
work is trained using the audio data. We minimize the NCA
loss for training [24] and train for 100 epochs with a learning
rate of 0.001. We use the Adam optimizer with batch-norm
and dropout. Results for retrieval on the pretraining classes are
given in table 2.

Transfer Learning: The data for the novel classes is divided
into blocks of 10 classes. Our machine setup is trained on the
data of one block at a time to emulate the human experiment.
For two-shot and three-shot learning, the data is repeated in cy-
cles. Since the blocks contain novel independent objects and la-
bels, we train and test each block separately and not in an incre-
mental fashion. Like the human experiment, the order of classes
is randomized. We use a triplet based approach for training,
and maximize the similarity between a matching image/audio
pair while minimizing the similarity between non-matching im-
age/audio pairs. Similarity is given by:

Sj,k = −||yj − xk||22 (1)

where yj and xk are the L2 normalized embedding for image j
and audio k respectively. The triplet loss is given by,

C(θ) = Sa,n − Sa,p + α (2)

where θ are the model parameters, a is the anchor point, p and n
are the corresponding positive and negative points, and α is the
margin which we set at 0.8. The model is trained to convergence
on one class before moving to the next. In one-shot learning,
the anchor and positive data samples are the image/audio sam-
ples used in the human experiment with negative data sampled
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Figure 3: Comparison of human and machine retrieval accu-
racy for 1, 2 and 3 shot blocks. Error bars indicate std. error.

from the pretraining classes. During the two-shot and three-
shot learning phases, the anchor is the novel image/audio of the
current cycle, positive points are sampled from the current and
previous cycles, and negative points are sampled from the previ-
ous cycles and pretraining classes. We train on each novel class
for 5 epochs with 4 batches per epoch of size 120, using a learn-
ing rate of 0.001. We use Adam optimizer with batch-norm and
dropout.

4. Results and Discussions
4.1. Human Experiment Results

4.1.1. Retrieval Scores

Fig. 3 shows the average score for each n-shot learning across
all subjects as accuracy (%). For humans, both IR and AR
scores in the 1, 2 and 3 shot blocks are in ascending order. The
overall AR accuracy is higher than that of IR, with means of
88.194 and 86.528 respectively.

The subject-wise scores for each n-shot learning are shown
in Fig. 4. The differences between IR and AR scores are more
pronounced here for individual subjects. It is to be noted that
the subjects are tested on the same set of objects in both retrieval
tasks, with no feedback in between. Since the learnt associ-
ation does not change after the learning phase, we expect the
retrieval scores to be the same. The difference suggests that the
modality of the query factors into the strength of the associa-
tion. Another possibility is the elimination of options for harder
test cases, which may vary across subjects depending on their
memory preference of one modality over the other.
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Figure 4: Subject-wise accuracy for image (top) and audio (bot-
tom) retrieval tasks.
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Figure 5: Average # of listens for the nth exposure of classes.

4.1.2. Temporal Dynamics of Association Learning

For each exposure, we analyze the number of clicks for a sample
termed as the number of listens per sample. The average num-
ber of listens per sample for every subject is shown in Fig. 5.
From the figure, it is evident that the average number of listens
per sample for the 1st exposure is significantly higher than that
of the 2nd exposure for all subjects. This difference is observed
between the 2nd and 3rd exposures as well. However, the dif-
ference in average listens per sample between the 2nd and 3rd
exposures are fewer.

We can speculate that a major chunk of the association
learning happens during the 1st exposure, which is reinforced
in the memory during the 2nd exposure. The average number
of listens for the 3rd exposure is 1.375 which suggests that, for
most classes, the subjects are merely confirming the association
by hearing the audio once.

4.1.3. Analysing Human’s Correspondence Learning

Most of the human subjects participated in the experiment were
able to learn audio-visual correspondence of unknown image
and audio stimuli with more than 90% accuracy with just three
time-separated exposures of the stimuli in 2 modalities. The re-
trieval accuracy is observed to increase significantly with two
exposures than after the single exposure. The average accu-
racy is higher for three-shot learning than the two-shot learning
blocks, but the relative change is less. The second exposure
itself helped the humans to revise and recollect the correspon-
dence they tried to learn in the first exposure. These results

U S U S U S U S
U: Unseen Query, S: Seen Query
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Figure 6: Generalisation of humans and machines in one-shot
learning. Error bars depict the standard errors.

show that humans learn a major chunk of the association and
cues of the multimodal input from a single exposure. The au-
dio retrieval task shows a more gradual improvement in accu-
racy with an increase in exposures as compared to the image
retrieval task. Image retrieval accuracy is more or less similar
for two-shot and three-shot learning sessions.

4.2. Machine Results

The random sampling of negative points primarily from the
large set of pretraining samples leads to variance in the model.
We average the retrieval accuracy trained using 5 random seeds.
The mean accuracy with std. error is shown in Fig. 3.

4.2.1. Machine vs Human performance

The model’s retrieval accuracy is averaged over each n-shot as
shown in Fig. 3. The model retrieval accuracy pattern is com-
parable to that of humans after n-shot learning. It follows a
steady increasing trend in accuracy as n increases, with the IR
accuracy consistently better than that of AR. It also outperforms
humans in all cases, except for AR in one-shot learning.

4.2.2. One-shot generalisation

The test results for generalisation from a single exposure are
shown in Fig. 6. Unseen query stands for the testing case where
augmented variants of the query sample, different from those
in the training, are used. Seen query stands for the testing case
where the query sample is the same sample used in training.
The machine model has a significant improvement in perfor-
mance for IR and AR on the seen queries. For humans, the
scores appear more consistent with a minor improvement be-
tween the seen and unseen queries. This suggests that humans
have a better ability to generalize from a single exposure.

5. Conclusions
In this paper, we examine the audio-visual correspondence
learning of novel classes for humans and machines. We note
that with an increase in the number of exposures to the stimulus,
humans and machines learn the audio-visual correspondence
with better accuracy. For humans, the number of times a subject
listens to the audio at a particular exposure confirms that the ma-
jor chunk of association learning happens in the first exposure
of the audio-visual pair. Our proposed machine model performs
on par with the humans in audio-visual correspondence learn-
ing. However, humans have a better ability to generalize to new
samples even from a single exposure.
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