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Abstract
Speech enhancement under unseen noise conditions is a

challenging task, but essential for meeting the increasing de-
mand for speech technologies to operate in diverse and dynamic
real world environments. A method that has been widely used
to enhance speech signals is nonnegative matrix factorization
(NMF). In the training phase NMF produces speech and noise
dictionaries which are represented as matrices with nonnega-
tive entries. The quality of the enhanced signal depends on the
reconstruction ability of the dictionaries. A geometric interpre-
tation of these nonnegative matrices enables us to cast them as
convex polyhedral cones in the positive orthant. In this work,
we employ conic affinity measures to design systems able to
operate in unseen noise conditions, by selecting an appropriate
noise dictionary amongst a pool of potential candidates. We
show that such a method yields results similar to those that
would be produced if the oracle noise dictionary was used.
Index Terms: Non-negative Matrix Factorization, Speech En-
hancement, Convex Optimization, Conic Affinity

1. Introduction
The last few years have witnessed an increased demand of
speech applications operating in a variety of diverse real life
environments including home, vehicles, and outdoor settings.
Hence, the ability of speech technologies to operate under dif-
ferent, and often unseen, types of noise is closely related with
their overall performance. This has renewed the interest of re-
searchers in speech denoising, and has resulted in the devel-
opment of methods that are not restricted to specific types of
noise. Such schemes include subspace methods with time and
spectral constraints [1, 2]. More recently, the community has
focused its attention on methods based on Deep Neural Net-
works (DNN) [3, 4], as well as Nonnegative Matrix Factoriza-
tion (NMF) [5, 6, 7].

Methods utilizing DNNs for denoising are usually trained
by combining clean audio signals with a diverse pool of noises,
having the noisy speech signal as the input and its clean version
as the target output. These methods are data intensive, since
they require a large amount of pairings between clean speech
signals and various types of noise at different SNR levels. On
the other hand, NMF methods do not suffer from this data de-
pendency; however, they require prior information about the
type of noise that corrupts the speech signal. Obviously, this
information cannot always be made available, and ways to deal
with such issues have been addressed in prior work [8].

In the training phase, NMF-based speech enhancement uti-
lizes magnitude spectrograms to construct spectral representa-
tions of the speech and the noise that corrupts the signal, re-
spectively. These spectral representations, also known as dic-
tionaries, are used in the testing phase to enhance the speech
signal. This is achieved by expressing the magnitude of the

noisy spectrogram (the spectrogram of the signal corrupted by
noise) as a conic combination of speech and noise dictionary
atoms and subsequently disregarding the part of the noisy spec-
trogram projected onto the noise dictionary. This is the reason
we need to know beforehand the type of noise that corrupts the
signal, because without this knowledge we would not be able
to construct the noise dictionary that is necessary in the test-
ing phase. However, in certain applications, e.g. enhancing a
person’s speech while imaged in an MRI scanner, you could
design protocols that would allow you capture noise without
explicit prior knowledge. The authors in [9] achieved that by
capturing MRI noise for a specific amount of time without the
human speech interference, and constructed their noise dictio-
nary based on this information. Of course such an approach is
not always feasible because many noises in real-life environ-
ments do not exhibit the characteristics that are conducive to
easy dictionary designs. In our earlier work [8], we proposed
two methods–a noise selection scheme and a combined dictio-
nary approach, to overcome these issues. Of particular interest
is the combined dictionary approach, where the noise dictionary
used in the testing phase is a “concatenation” of the available
known noise dictionaries. Although, this approach shows satis-
factory results there are cases where it fails. It was noted that
a possible solution would be to develop a selection scheme that
would choose only “valid” candidates that would be included
in the combined dictionary. To achieve that one would need to
develop robust mathematical tools to compare those NMF dic-
tionaries.

In this work, we examine how to exploit the geometrical
properties of NMF in order to design speech enhancement sys-
tems that are able to operate in unseen noise conditions. To that
end, we investigate different conic affinity measures [10] which
give information regarding how “similar” two convex polyhe-
dral cones are. Given a noisy signal, we use the conic affinity
measures to make informed decisions about which noise dic-
tionary to use from a pool of available noises. Once a noise
dictionary is selected it is employed in the denoising phase to
produce the enhanced signal. Different conic affinity measures
have been used to address various challenges, such as image
clustering [11], and studying the dynamics of large metabolic
networks [12].

We evaluate the performance of our system based on two
metrics: Perceptual Evaluation of Speech Quality (PESQ) im-
provements [13], and segmental-SNR improvements[14]. We
show that using such techniques one can design systems that
are able to perform in unseen conditions, with comparable per-
formance when a oracle noise dictionary is used, while at the
same time avoiding the need of huge amounts of data.

The dictionaries produced by NMF are nonnegative, hence
they can be interpreted as generators of convex polyhedral cones
in the positive orthant [15]. The dictionary atoms express the
extreme rays of the convex polyhedral cone. If the dictionaries

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-12694029



created contain non-extreme rays they can be removed, since
the geometry of the cone will remain unchanged. Identifying
non extreme rays can be achieved by a simple feasibility test,
where we test if the ray can be expressed as a conic combination
of the remaining rays. In our experiments we did not encounter
such cases. In fact, the enhanced speech spectrogram is a conic
combination of the speech dictionary atoms.

The geometrical properties of NMF have been exploited to
address various problems in the literature. For example, in [16]
an NMF modification based on convexity is proposed and ap-
plied in hyperspectral imaging (HSI). The authors in [17] create
the dictionary by constructing the conic hull of the training data
instead of using an objective function to minimize the recon-
struction error [18]. Moreover, given a source, i.e., speech or
noise, Kim et al. created a set of local dictionaries to capture
the source’s manifold [19].

The rest of the paper is organized as follows. In Section 2
we give an overview of NMF and provide insights about its geo-
metrical interpretation. In Section 3, we describe the system, as
well as the conic affinity measures we employ in our study. In
Section 4, we present our experiments, discuss the results, and
outline some interesting directions for future research. Finally,
in Section 5 we summarize our work and provide our conclu-
sions.

2. Explaining NMF through a geometric
approach

Given a non-negative matrix V ∈ RK×N , NMF attempts to
find non-negative matrices W ∈ RK×L and H ∈ RL×N such
that V ≈ WH1. In order to find this approximation, one needs
to solve the following optimization problem:

minimize
W,H

D(V ||WH)

subject to W � 0, H � 0

whereX � 0 means that all the elements ofX are nonnegative,
while D(·) is a separable cost function such that:

D(V |WH) =

K∑
k=1

N∑
n=1

d(Vkn||[WH]kn)

where Aij , and [A]ij stand for the element of matrix A at
row i and column j. The cost function D(·) that is commonly
used is the β-divergence [20].

In the special case of β = 2, the β-divergence reduces to
the Euclidean distance, which is the cost function we use in this
work. Since we need to optimize with respect to both W and
H , an iterative procedure is used where updates for W and H
are alternated until convergence.

In the speech enhancement framework, NMF is applied
in the following way. In the training phase, we compute a
speech dictionary Wspeech ∈ RK×L, and a noise dictionary
Wnoise ∈ RK×L, from their corresponding spectrogram mag-
nitudes, where the design parameters K, and L represent the
number of frequency bins and the number of dictionary basis
vectors respectively. We assume, without loss of generality, that
both the speech and noise dictionaries have the same number of
basis vectors L. In the testing phase, we estimate the activation
matrixHnoisy ∈ R2L×M that best approximates the magnitude
spectrogram of the noisy signal Vnoisy ∈ RK×M :

1Throughout this work the matrix V , upon which NMF is applied,
stands for the magnitude of the spectrogram.

Vnoisy ≈ [Wspeech Wnoise]Hnoisy (1)

where Wspeech and Wnoise are fixed and retrieved from the
training phase. Finally the enhanced spectrogram magnitude V̂
is calculated by:

V̂ = WspeechH
′ (2)

whereH ′ is the L×M matrix consisting of the first L columns
of Hnoisy , i.e. H ′ = [hT

1 ; hT
2 ; . . . hT

L ], with hT
j being the j

row of Hnoisy .
Assuming that the magnitude spectrogram Vnoisy consists

of M frames, then Equations (1) and (2) can be expressed as:

vm ≈ [Wspeech Wnoise]hm ∀m = 1, 2, . . . ,M (3)

v̂m = Wspeechh
′
m ∀m = 1, 2, . . . ,M (4)

where vm, v̂m are the m-th frames of Vnoisy and V̂ respec-
tively, and hm, h′m the m-th columns of Hnoisy and H ′.

Since the dictionaries Wspeech, Wnoise are nonnegative,
then by extension their combination [Wspeech Wnoise], will
also contain only nonnegative values. Thus, all these dictionar-
ies can be considered as generators of convex polyhedral cones
in the positive orthant [15]. Given a matrix P , a convex polyhe-
dral is the set defined by the conic combination of its columns:

ΓP =

{
x : x =

∑
j

αjPj , aj ≥ 0 ∀j

}
= {x : x = Pα, α � 0}

(5)

where Pj are the columns of P , αj are nonnegative constants,
and α a vector whose elements are the αj values.

Notice that all the elements of hm in Eq. (3) are non-
negative, since hm is a column of the nonnegative matrix
Hnoisy . Thus, vm is the conic combination of the atoms in
[Wspeech Wnoise] according to equation (5). Therefore, in the
NMF framework the noisy frame is a point in the cone ΓC gen-
erated by C = [Wspeech Wnoise].

This insight is crucial for understanding how speech en-
hancement is achieved in the NMF framework. A noisy frame
vm is expressed as a point in the in the cone ΓC generated by
combining the speech and noise dictionaries. Hence, the noisy
frame is described as the conic combination of the extreme rays
of ΓC , or equivalently the conic combination of the atoms from
the speech, and the noise dictionary. The result of this process
is that the noise dictionary will capture the noise-only informa-
tion of the frame, separating it from the speech components,
by adjusting accordingly the corresponding conic coefficients.
Finally, once the noisy frame vm is decomposed, eq. (3), we
retrieve the enhanced frame by keeping only the activations that
correspond to the speech dictionary, eq. (4).

The quality of the enhanced signal depends on the ability
of the cone ΓN , generated by Wnoise, to accurately model the
noise components of the signal. Therefore, prior knowledge re-
garding the type of noise that corrupts the signal is necessary to
create an accurate dictionary Wnoise. However, this is not al-
ways feasible, and has attracted research efforts to address this
issue. There are various methods proposed in the literature, for
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example, [8] uses a noise selection scheme to decide which dic-
tionary to use in the denoising phase, while a similar approach
is being followed in [21] for SNR estimation. Other methods
attempt to capture the signal information directly without fo-
cusing on specific noise types, e.g., such an approach has been
used for image clustering in [11].

Based on these principles, we could develop methods that
measure “similarity” of convex polyhedral cones, which could
guide the design of systems that use some form of noise-
selection to compensate for missing noise information.

3. System Description
We will explore four conic affinity measures and their individual
performance. The first one exploits the Euclidean distance of a
point to a cone, the second one is based on cosine similarity,
the third takes into account the truncated Pompeiu-Hausdorff
metric, and finally the fourth one uses the ball-truncated volume
of the cone.

Consider two cones ΓA, ΓB generated by matrices A, and
B. We assume without loss of generality that the columns of
both matrices act as the extreme rays of the cones they generate.
The first affinity measure is defined as the average Euclidean
distance of each extreme ray in ΓA to the cone ΓB :

δd(ΓA,ΓB) :=
1

K

K∑
k=1

d(ak,ΓB) (6)

where ak is an extreme ray of ΓA, K the number of extreme
rays and d(ak,ΓB) the Euclidean distance of ak to the cone
ΓB . In order to find the required distance we need to solve the
following convex quadratic problem:

minimize
x

||Bx− ak||22

subject to x ≥ 0

In our case, the cones are generated by the NMF dictio-
naries. Since the atoms of those dictionaries can have different
`2 norms, we normalize all the atoms to unit `2 norm in order
to have consistent distance values, without affecting the perfor-
mance in the denoising phase. Notice that smaller values of
δd(ΓA,ΓB) indicate that the two cones ΓA, ΓB are closer in
the multidimensional space they are defined.

The second conic affinity measure is based on pairwise co-
sine similarity between the extreme rays of cones. For each of
the two cones ΓA, ΓB , we form random conic combinations of
their extreme rays to produce new points within their respective
sets.

The result of this “sampling” process are the sets CA ⊂ ΓA

and CB ⊂ ΓB . Following this, we find the vectors ai ∈ CA

and bi ∈ CB with the maximum cosine similarity:

s(ai, bi) =

∑M
m=1 aim · bim√∑M

m=1 a
2
im ·

√∑M
m=1 b

2
im

Subsequently, these vectors are removed from CA and CB and
we repeat the process. Finally, we compute the average cosine
similarity of all pairs:

δs(ΓA,ΓB) :=
1

|CA|

|CA|∑
r=1

s(ar, br) (7)

where |CA| = |CB | is the cardinality of the set CA, and ar, br
are points in the sets CA and CB respectively. Notice that
δs(ΓA,ΓB) is bounded between 0 and 1 and higher values of
δs(ΓA,ΓB) indicate high degree of similarity between the two
cones ΓA, ΓB .

The Pompeiu-Hausdorff metric is defined as:

δPH := haus(ΓA ∩ Bn,ΓB ∩ Bn) (8)

where Bn is the closed unit ball in Rn and

haus(ΓA,ΓB) = max

{
max
x∈ΓA

d(x,ΓB), max
x∈ΓB

d(x,ΓA)

}
We remind the reader that d(x,ΓA) is the euclidean distance of
point x to the cone ΓA. In order to calculate haus(ΓA,ΓB) one
needs to solve two conic linear programming problems.

Finally the ball-truncated volume of the cone is defined as:

btv(K) := voln(K ∩ Bn), (9)

where voln stands for the n-dimensional Lebesgue mea-
sure.

One way of calculating the expression in (9) is by using the
n-dimensional Gaussian measure as shown in [22]. Hence we
can write:

btv(K)

voln(Bn)
=

1

(2π)n/2

∫
K

e−
1
2
||x||2dx (10)

We can utilize the above conic affinity measures, along with
a diverse pool of available noise dictionaries to design sys-
tems operating in unseen noise conditions. For each noise in
our pool we calculate the corresponding dictionaries. Subse-
quently, when the system is presented with a noisy signal, we
apply the NMF procedure and produce a “dictionary” represen-
tation Wnoisy and calculate the conic affinity measures of the
cone generated by Wnoisy with those generated from the noise
dictionaries.

In this work we test the performance of each affinity mea-
sure individually. So the system designed based on the measure
defined by (6) will calculate the metric based on Wnoisy and
each of the noise dictionaries and the one that will yield the
smallest value will be the selected dictionary. In contrast, the
system that is based on (7) will select the noise dictionary that
corresponds to the highest value of the metric since higher val-
ues of δs(· , ·) indicate higher degrees of similarity. The system
designed based on Pompeiu-Hausdorff metric selects the dictio-
nary corresponding to the lowest value. Finally, the system that
uses the ball-truncated volume makes it decision in the follow-
ing way: First, we form the matrices [Wnoisy Wm], for each
of the m noises in our pool. Then we calculate the quantity de-
scribed in (10) for each of the cones generated from these ma-
trices. Notice that in all cases the dimensionality n is the same
thus we can ignore the constant voln(Bn) when comparing the
volumes, while the final value is calculated by “sampling” the
cone as we did in the case of cosine similarity.

4. Experiments and Discussion
To perform our experiments we need clean speech utterances
to construct speaker-specific dictionaries, as well as a pool of
noises with different characteristics. To that end, we use 50
male and 50 female speakers from the TIMIT database [23].
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Table 1: Performance of speech enhancement for five noise types selected from the NOISEX-92 database (white, speech babble, high
frequency, machine gun, and factory floor 1). Performance is measured with respect to two metrics: PESQ, and segmental-SNR
improvements. In all cases “Oracle” represents the dictionary that corresponds to the noise that corrupts the signals, “Best in pool”
corresponds to the dictionary that results in the best performance if we exclude the oracle, and “Combined” is the combined dictionary
approach presented in [8]. The other columns correspond to the systems designed based on the conic affinity measures described in
(6), (7), (8), and (9).

PESQ segmental-SNR

δd δs δPH btv Oracle Best in pool Combined δd δs δPH btv Oracle Best in Pool Combined

W. 0.586 0.586 0.586 0.586 0.667 0.586 0.712 17.342 17.342 17.342 17.342 19.453 17.342 18.658

S.B. 0.257 0.323 0.298 0.323 0.392 0.323 0.411 5.043 4.642 5.244 4.956 5.437 5.244 3.901

H.F. 0.436 0.458 0.408 0.486 0.511 0.486 0.367 13.181 15.248 11.481 15.101 17.014 15.248 12.023

M.G. 0.482 0.534 0.134 0.534 0.603 0.534 0.417 9.123 10.355 11.541 12.042 13.787 12.042 6.762

F.F.1. 0.422 0.303 0.422 0.378 0.451 0.422 0.311 11.435 12.981 12.981 13.431 15.656 13.431 11.283

Each dictionary is trained using 9 utterances. The test utter-
ances are corrupted with noises from the NOISEX-92 database
[24], at SNR levels of 0 dB and 5 dB. The NOISEX-92 database
contains 15 types of noise with different characteristics. All
the spectrograms were extracted using 25 ms windows with
an overlap of 10 ms and 512 frequency bins. Thus, for each
speaker and noise type, we have dictionaries of 257 atoms, and
all the atoms were normalized to unit length.

Moreover, we examine the ability of the proposed systems
to perform in unseen noise conditions with the following ex-
periment. We corrupt speech utterances with a specific type of
noise and then we remove it from the noise pool, thus the sys-
tem cannot pick the type of noise that alters the signal and is
forced to pick another noise with “similar” characteristics. For
example, if we corrupt an utterance with Military Vehicle noise,
this specific noise is removed from the pool, and the system
will select one of the remaining 14 types of noise. We enhance
the noisy signal with the selected dictionary, and measure the
quality of the produced signal in terms of Perceptual Evaluation
of Speech Quality (PESQ), and segmental-SNR score improve-
ments. We compare the performance of the proposed systems
with the “oracle” dictionary, i.e. the dictionary of the noise that
actually corrupts the signal, and the best available dictionary in
the noise pool.

The results of this experiment are presented in Table 1. An
immediate observation that can be made is that all the systems
perform well and often they choose the best available option,
and the performance is on par with the oracle noise dictionary,
which is the dictionary that corresponds to the type of noise the
signal was corrupted with. Obviously, the system is dependent
on the size and variability of the noise pool. Notice that for
both PESQ and segmental-SNR the systems show satisfactory
performance. In addition to that we observe that the combined
dictionary does not always gives the best performance, a result
that agrees with those in [8]. A combined dictionary could re-
sult in a cone that spans a larger area of the orthant, allowing the
algorithm to select atoms that would express more accurately
the conic combination, however this area could include regions
of speech. This could be a possible explanation that justifies the
inconsistent results of the combined dictionary approach.

Although we do not present such experiments here due to
space limitations, the reader should notice that if we restrict the
noise pool to only a few types of noise, or to noises that they
all share the same characteristics, it severely limits the ability
of the system to select appropriate noise dictionaries to enhance
the signal, resulting in poor performance.

Furthermore, these results support our hypothesis that conic
affinity measures could be employed to guide the design of
NMF-based systems able to operate in unseen noise conditions.
This warrants further investigation on utilizing the geometric
properties of NMF produced dictionaries to improve the perfor-
mance of speech technologies. Similar systems found in litera-
ture use signal extracted features (e.g., MFCC, filterbanks, etc),
[21, 25].

Another interesting observation is that the systems based
on different conic affinity measures hold complementary infor-
mation. This leads to the conclusion that a method combining
these conic affinity measures along with others capturing differ-
ent characteristics of the cones’ geometry could yield superior
performance.

Our next steps will be focused on two aspects. First, we
need to enrich our system with more conic affinity measures
that are able to capture information regarding different aspects
of the cones than the ones we have already used, for example
the orientation of the cone in the positive orthant. Second, we
need to investigate methods that that combine the information
from different conic affinity measures and take advantage of the
complementary information these affinity measures hold. For
example, if we consider each affinity measure as an “expert”
informing us about its decision, then we could employ schemes
from graph theory (e.g., Schulze method) to make more sophis-
ticated and accurate decisions regarding the selected dictionary.

5. Conclusions
In this work we examined four conic affinity measures and how
they could be used to design speech processing systems op-
erating in unseen noise conditions. The systems utilize these
affinity measures to select a noise dictionary from an available
pool of noises. The conic affinity measures attempt to pro-
vide a degree of “similarity” between two convex polyhedral
cones, enabling us to find an appropriate noise dictionary dur-
ing the speech enhancement process. The results indicate that
these conic affinity measures hold information which allow us
to make informed decisions regarding which noise dictionary to
use. We measured the performance of our system with respect
to two speech enhancement metrics commonly used in the lit-
erature, and found that our system selects an appropriate dictio-
nary to enhance the signal. In the future, we plan to incorporate
more conic affinity measures that will capture different aspects
of the cone geometry, and investigate a more robust noise selec-
tion criterion.
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