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Abstract
Spoken language understanding (SLU) tries to decode an in-
put speech utterance such that effective semantic actions can
be taken to continue meaningful and interactive spoken dialog
(SD). The performance of SLU, however, can be adversely af-
fected by automatic speech recognition (ASR) errors. In this
paper, we exploit transfer learning in a Generative pre-trained
Transformer (GPT) to jointly optimize ASR error correction
and semantic labeling in terms of dialog act and slot-value for
a given user’s spoken response in the context of SD system
(SDS). With the encoded ASR output and dialog history as
context, a conditional generative model is trained to generate
transcripts correction, dialog act, and slot-values successively.
The proposed generation model is jointly optimized as a clas-
sification task, which utilizes the ground-truth and N-best hy-
potheses in a multi-task, discriminative learning. We evaluate
its effectiveness on a public SD corpus used in the Second Di-
alog State Tracking Challenge. The results show that our gen-
eration model can achieve a relative word error rate reduction
of 25.12% from that in the original ASR 1-best result, and a
sentence error rate (SER) lower than the oracle result from the
10-best ASR hypotheses. The proposed approach of generating
dialog acts and slot-values, instead of classification and tagging,
is promising. The refined ASR hypotheses are critical for im-
proving semantic label generation.
Index Terms: speech recognition, human-computer interac-
tion, semantic labeling

1. Introduction
Spoken Dialog System (SDS) supports human/machine interac-
tions by using speech. Spoken language understanding (SLU) is
a technology to interpret the semantic meaning conveyed in spo-
ken input for taking appropriate actions in task-oriented SDS. It
generally consists of two key components: automatic speech
recognition (ASR) to convert input speech into recognized text
and a natural language understanding (NLU) to transform the
ASR word string into semantic labels that can drive subsequent
SDS responses. SLU performance can be significantly degraded
if ASR is suffering from mismatched acoustic/language mod-
els between training and test, e.g., ambient noise, speaker vari-
ation in accented pronunciations and out-of-vocabulary words
(OOV).

Many approaches have been proposed to reduce the impact
of ASR errors to NLU. ASR N-best list or Word Confusion Net-
works (WCNs) / word lattice that preserves more accurate hy-
potheses than one-best output was employed as inputs to NLU
systems [1–4]. Recently, substantial work has shown that us-
ing pre-trained transform-based language models like BERT [5]
and tuning it for the downstream NLP tasks outperforms the
conventional methods. NLU is one of such downstream tasks
[6]. The pre-trained models on a vast text corpus can learn a

universal representation for the common-sense knowledge and
lexical semantics hiding in the data. Adapting pre-trained trans-
former to ASR lattice was proposed to SDS in [7], where lattice
reachability masks and lattice positional encoding were utilized
to enable lattice inputs during fine-tuning. In [8], ASR-robust
contextualized embeddings were learned by using word acous-
tic confusion. The studies on ATIS corpus [9] have shown that
both approaches could improve the robustness of NLU to ASR
errors.

Meanwhile, many researchers tried to skip ASR entirely or
use only partial information, e.g., phone sequence instead of
word sequence, extracted from its modules for SLU [10–12].
In [10], it has studied techniques for building call routers from
scratch without any knowledge of the application vocabulary
or grammar. With the popularity of end-to-end modeling ap-
proach, which utilizes as little a prior knowledge as possible,
for speech recognition [13], language recognition [14], and etc.,
ASR-free end-to-end SLU has also been exploited in [15–20],
where either the raw waveforms or the acoustic features like fil-
terbank features are directly used as the inputs of SLU models
for inferring semantic meaning in order to address the issues
caused by ASR.

Inspired by the transfer Learning with a unified text-to-text
transformer (T5) [21] where the input and output are always text
strings for NLP tasks, we exploit using transfer learning based
on a Generative pre-trained Transformer (GPT2) [22, 23] lan-
guage model to jointly correct ASR errors and label semantics
(dialog act and slot-value) for the spoken response in SDS.

The major contribution of this paper is two-fold:

1. We formulate semantic labeling, which is conventionally
regarded as a classification or tagging problem, as a con-
ditional generation problem, given the erroneous recog-
nition hypothesis and dialog history. It is jointly opti-
mized with generating corrective ASR hypotheses in a
sequential way during the supervised training.

2. A multi-task loss combining generative training for
causal LM with discriminative training for reranking
N-best list is proposed to transfer learning/fine-tuning
based on a pre-trained model for ASR error correction
and semantic labeling.

2. Related Work
Neural/transformer-based language models have been generally
used to rescore the ASR N-best list to improve the performance
of speech recognition, i.e., the same objective as that of ASR er-
ror correction. The approaches proposed in [24,25], are similar
to our work. They use the recognition output as the context to
generate a corrective hypothesis or as one language to translate
into another language. Our approach differs from them in two
ways: 1) the N-best list is only used to augment the training data
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size during the model training and not required in the inference
stage; 2) ASR output correction is jointly optimized with the
downstream semantic labeling task under the context of SDS.

Fine-tuning a pre-trained LM for NLP tasks like intent clas-
sification, slot filling, natural language generation, or end-to-
end task completion have been explored for dialog systems
[6, 26–28]. However, most of them aim at processing the user’s
written responses or spoken responses with human transcrip-
tions. Our work tackles the issue caused by ASR for the seman-
tic labeling in SDS, e.g., correct slot tag but erroneous value
made by ASR in a slot- filling task.

The highest relevant work to ours has been presented in
[29], where multi-task neural approaches were proposed to con-
textual modeling for ASR correction and language understand-
ing. Their methods and our approaches are all tested on the
same corpus, i.e., DSTC-2 [30]. The significant difference be-
tween ours and theirs is that they use a classification model to
predict dialog act and an IOB tagging model to tag each token
in the utterance for slot-filling, while we employ a generation
model to generate all semantic labels. Our approach can predict
multiple dialog acts and correct the erroneous values for slots
for a given spoken response in the sense of generation.

3. Joint ASR Error Correction and
Semantic Labeling

Transfer learning for a specific task based on a generative model
pre-trained on a diverse corpus usually achieves the better gen-
eralizability than the model trained only on task-specific data.
Inspired by it, we employ transfer learning to GPT-2 for our
tasks. GPT-2, a stacked decoder Transformer, is a generative
LM trained on a massive unlabeled text from the web, where
multi-head self-attention over the context is used to generate
distribution for output sequence. We add two additional model-
ing heads on the top of GPT-2. One head will be trained with
an auto-regressive generation process for generating the correc-
tive ASR hypothesis and semantic label sequentially, while the
other head will be discriminatively trained to rerank N-best list
from both ASR and NLU.

3.1. Training

We use a weighted sum of multi-tasks losses, i.e., generation
task and classification task, in the training stage.

Generation Task Given a dialog corpus of turns
{(s1, u1), ..., (sK , uK)} where si and ui represent i-th
system prompt and user response, respectively. Each ui

contains words or tokens {w1
i , ..., w

T
i )}, the objective of

training a conditional LM is to maximize the log-likelihood
over the entire dialog corpus as following,

Lg =
∑
i

∑
t

logP (wt
i |w<t

i ; (si, ûi), ..., (s1, u1); θ) (1)

where ui and ûi are human transcription and recognition out-
puts for i-th user response, respectively. w<t

i represents all the
tokens before t. Equation 1 can be changed to the following for
jointly training with semantic labeling.

Lg =α
∑
i

∑
t

logP (wt
i |w<t

i ; (si, ûi), ..., (s1, u1); θ)

+ β
∑
i

∑
l

logP (ml
i|m<l

i ;ui; (si, ûi), ..., (s1, u1); θ)

(2)

where ml
i is the l-th semantic label for i-th user response. It

can be either dialog act or slot-value. α and β are the weights
for the conditional LM losses of transcriptions and semantic la-
bels. For generation model head training, we shift each input
sequence, ui, to GPT-2, project the hidden state on word em-
bedding matrix and calculate a conditional LM loss on them
with cross-entropy. To minimize a gap between training and
inference, i.e., the training of semantic label generation is con-
ditioned on ground truth, ui, while ground truth is missing dur-
ing inference, scheduled sampling proposed in [31] is applied
during the training.

Classification Task We use {û1
i , ..., û

N
i } to indicate mul-

tiple input sequences, e.g., N-best hypotheses for i-th user re-
sponse. We replace the oracle hypothesis in the N-best list of
training data with the ground truth and annotate them with one
and other N-1 best hypotheses with zero. The objective of train-
ing a discriminative classifier is to distinguish among the vari-
ous possible classes, i.e., the ground truth can be distinguished
from the N-1 best hypotheses in our case,

Lc =
∑
i

( logP (uj
i |(si, ûi), ..., (s1, u1); θ)

− 1

N − 1

∑
k 6=j

logP (ûk
i |(si, ûi), ..., (s1, u1); θ))

(3)
where uj

i is the ground truth and ûk
i is the k-th N-1 best hy-

potheses. The ground truth and N-1 best hypotheses can also
be the concatenation of utterance transcription and semantic la-
bels. For classification model head training, we input every se-
quence, uj

i or ûk
i , into the GPT-2, pass the hidden-state of the

last token (the end of sequence token), through a linear layer
with one output to get a score and apply a cross-entropy loss to
classify correctly ground truth among N input sequences.

3.2. Inference

The weighted sum of multi-tasks losses is employed in the train-
ing stage, but only the generation task is used to generate out-
puts in the inference stage. The classification task also can be
applied to rerank N-best list of testing data. However, its perfor-
mance is more interior than that of generation. A detailed analy-
sis will be given in the next section. A schematic diagram of the
inference stage in our approach is illustrated in Figure 1. Given
the dialog history and the ASR transcription for the current user
response, it encodes the tokens, input types and position, passes
through a fine-tuned transformer, and generates corrective tran-
scription, semantic labels or the concatenation of them, which
depends on the outputs/goals of the fine-tuned transformer in
the training stage.

4. Experiments and Results
Our approach to ASR error and semantic labeling is evaluated
on the corpus named DSTC-2 [30]. The models are constructed
using PyTorch [32] and HuggingFace’s Transformers [33].

4.1. Corpus

DSTC-2 was the corpus collected using Amazon Mechanical
Turk in the domain of restaurant information and released for
the second state tracking challenge. During the data collection
phase, the spoken dialog system provided information about the
restaurant and the Turkers were asked to find restaurants that
matched their preference on the area, price range and food type.
The corpus includes 10-best ASR recognition hypotheses for
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U0: Hello.
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Corrective Ui delim4

 Labels delim5

Corrective Ui delim4  Labels delim5

Figure 1: A schematic diagram of the inference stage in our approach and an example of dialog history, ASR transcription of the current
user response, generated corrective transcription and semantic labels.

each utterance from users instead of audio files. Our goal of
this study is the same as in [29], i.e., How to leverage the gener-
ative pre-trained transformer-based LM, which employs atten-
tion mechanism to consider contextual information, to improve
the performance of ASR error correction and semantic label-
ing, rather than to outperform the state-of-the-art approaches on
DSTC-2 corpus. Unlike modifying the original labels for dia-
log act, converting the slot annotation into IOB tagging format
and deleting N-best hypotheses with the transcriptions: “noise”,
“unintelligible”, “silence”, “system”, “inaudible”, and “hello
and welcome” in [29], we keep all original labels for slot-value,
dialog act and ASR transcription based on the considerations:

1. It is not a straight-forward way to convert the slot annota-
tion into IOB format for many cases in DSTC-2 corpus,
e.g., for the transcription, “I am looking for a moderately
priced restaurant in the south part of town.”, the origi-
nal labels are dialog act: inform, and slot-values: (area
= south, pricerange = moderate, type = restaurant, task
= find). The slot values: “find” and “moderate” in the
above case do not exactly match the words in the tran-
scription.

2. To investigate the contributions of contextual turns to the
performance of proposed approaches, it is better not to
delete any turns. Besides, the ASR transcriptions, e.g.,
empty, noise, and silence are also quite common in a real
scenario of SDS.

In total, there are 11,677 train, 3,934 development, and 9,890
test utterances extracted from 1,612 train, 506 development, and
1, 117 test calls/dialogs used in this study. Please refer to [30]
for the detailed annotations of the dialog act and slot-value. An
example is shown in Figure 1.

4.2. Experimental Setup

Word error rate (WER) and sentence error rate (SER) were used
to evaluate the performance of ASR error correction. The per-
formance metrics for semantic labeling are dialog act accuracy
(DA-Acc), slot-value F1 (slot-F1), and sentence-level semantic
frame accuracy (Frame-Acc), where the sentence with all cor-
rect labels including both dialog act and slot-value is counted
as a correct sentence. We use byte-level Byte-Pair-Encoding

[34] for tokenizer and GPT-2 small that consists of 12-layer,
768-hidden, 12-heads with 124M parameters as the pre-trained
model for fine-turning to adapt it to our tasks. The preliminary
results of transfer learning based on GPT-2 small (124M), GPT-
2 medium (355M) and GPT-2 large (774M) for semantic label
generation given ground-truth transcription, which are shown
in Table 1, indicate that the larger GPT-2 model and the bet-
ter performance, but it is out of the scope of this article, and
the detailed comparison of model size vs performance will be
considered as the future work.

We consider 1-best ASR output and N-best list rescoring
with transformer-based LM as the baseline of ASR error cor-
rection, and the semantic labeling based on 1-best ASR out-
put as the baseline of semantic labeling. Instead of train-
ing a transformer-based LM from scratch, we fine-tune GPT-
2 (small) LM with the ground-truth (human transcription) of
the training data set. To have a fair comparison with our ap-
proaches, which consider long contexts, we delimit the dialog
history, i.e., the previous system prompts/user responses and
the current system prompt, with a special token and concate-
nate them together as inputs to the LM modeling. The resultant
GPT-2 LM is employed to rescore the N-best list of the testing
set. For the generation tasks, the training data set is augmented
by using the ASR N-best list of training data. There are a total of
114,690 pairs of ASR transcription and human transcription and
the corresponding semantic label sequences used in the training
stage.

Adam optimizer with weight decay [35] and a schedule
with a learning rate that decreases linearly are used to train
models. The weight of score interpolation in baseline N-best
rescoring, weights for joint generation, weights for multi-tasks
losses, the number of epochs, and the starting point of the learn-
ing rate for model training are optimized by using the valida-
tion/development data set. Top-k sampling that samples from
the next-token distribution by keeping only the top k tokens is
employed to generate hypotheses in the inference stage.

4.3. Results and Discussion

Table 1 lists the performance on the testing set in terms of WER
and SER for ASR error correction and DA-acc, Slot-F1, and
Frame-Acc for semantic labeling obtained by using the base-
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Table 1: Performance(%) of different systems

Tasks Experimental Settings WER SER DA-Acc Slot-F1 Frame-Acc

Semantic ground truth (small/medium/large) 97.75/98.22/98.64 97.63/98.17/98.58 94.30/95.91/96.87
Semantic 1-best 32.2 66.47 87.20 83.86 75.54
Semantic oracle (10-best) 21.83 44.98 89.26 86.54 78.90

ASR 10-best rescoring 28.83 57.02
ASR 10-best reranking 29.61 55.23
ASR generating 25.64 44.22
ASR generating (multi-task learning) 24.5 42.56

Joint generating 24.71 42.90 88.89 83.94 76.74
Joint generating (multi-task learning) 24.11 42.21 89.01 84.19 77.25

line and the proposed approaches. The semantic labeling results
from ground-truth/human transcriptions and the oracle outputs
from ASR N-best lists are also included in Table 1 as the upper-
bound for the comparisons.

As the performance of the semantic labeling model by us-
ing the ground truth as the input shown in Table 1, it can be ob-
served that our approach of using generation model to produce
a sequence of semantic labels is very promising, or to be pre-
cise, it achieves the DA-acc of 97.75%, the Slot-F1 of 97.63%,
and the Frame-acc of 94.30%. Although it is not completely fair
to compare our results with those achieved by using a classifi-
cation model in [29] since the data size and labeling strategies
used in the experiments are not exactly the same (They have not
released the modified annotations for DSTC-2), a close result
indicates that the performance of our approach is on a par with
the conventional approach. The same observation shown in [29]
is that the performance of the semantic labeling model is signif-
icantly degraded if the ASR 1-best hypotheses are used as the
inputs to the models.

The baseline that uses fine-tuned GPT LM to rescore N-best
list can achieve relative WER reduction of 10.5% for the testing
set, i.e., WER is decreased from 32.2% to 28.83%. This result
is very close to that of the same approach presented in [29],
wherein the relative WER reduction of 10.6% was obtained.
We have tried to use the training data to train a conventional
statistical LM and an LM with the same architecture of GPT2
from scratch but both observed the poor performance. A ranker
trained by using GPT-2 can achieve the relative 8% reduction in
WER, which is worse than that of rescoring. We suspect that it
is caused by mismatched training and testing data. The ranker,
i.e., classification task, was trained by using N-best list of train-
ing data wherein the oracle hypotheses were replaced by the
human transcription while human transcription is not available
for N-best list of testing data. The ranker was used as an aux-
iliary learning task to aid the generation task. This is why we
consider replacing the oracle hypothesis with the ground truth.

The generation model can attain a significant improvement
in ASR error correction. It reduces the WER from 32.2% to
25.64%, i.e., a relative WER reduction of 20.4%. By joint op-
timization with classification task, semantic labeling and both
in the training stage, its performance can be further improved
in terms of relative WER reduction of 23.91%, 23.30% and
25.12%, respectively. A noticeable result observed is that the
42.21% SER of the generated hypotheses by our approach is
lower than the 44.98% SER of oracle hypotheses. These results
are superior to those shown in [29]. An example of the hypothe-
ses produced by 1-best ASR, 10-best rescoring, and generating

Table 2: An example of the hypotheses produced by 1-best ASR,
10-best rescoring and generating

Ground truth: i want to find a moderately priced restaurant
and it should be in the west part of town
1-best: i would like moderately priced restaurant you should
be in the west part of the cow
Re-scoring: i would like a moderately priced restaurant you
should be in the west part of the cow
Generating: i would like a moderately priced restaurant in
the west part of town

is shown in Table 2. It indicates that the generation model can
produce a much more meaningful sentence than that of rescor-
ing.

Our approach of multi-task learning for ASR error correc-
tion and semantic labeling can improve the performance of se-
mantic labeling as well. Table 1 shows that the model trained
by jointly generating transcription and semantic label sequence
can improve the DA-Acc from 87.20% to 88.89%, Slot-F1 from
83.86% to 83.94% and Frame-Acc from 75.54% to 76.74%
and the model trained by joint generation and classification
tasks can further improve DA-Acc, Slot-F1, and Frame-Acc to
89.01%, 84.19%, and 77.25%, respectively. The performance
in terms of DA-Acc is close to that of using oracle hypotheses
from the N-best list.

We analyze the results produced by our approach and find
that our approach has advantages over the conventional ap-
proach of IOB tag prediction for semantic labeling, 1) It can
produce multiclass naturally, e.g., A label sequence of ack ()
| reqalts (food=thai) for the utterance “okay how about thai
food”, which contains two acts: “acknowledge” and “request-
ing for alternative suggestions”; 2) It can also flexibly produce
the empty for slot type or slot value, e.g, the labels of inform
(=dontcare) for the user response “any” to the system prompt
“What part of town do you have in mind?”. However, it will oc-
casionally produce duplicated slot-values and nonsense labels.

5. Conclusions
In this study, transfer learning based on GPT-2 is proposed to
correct ASR errors and to improve the corresponding semantic
labels in SDS. Experimental results show that our approach is
effective in improving the performance of both tasks. In the fu-
ture, we will generalize the proposed approach to multi-domain
SDS corpora and to build a universal model and test it in unseen
domains that are short of adequate training data.
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