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Abstract
Recent advances in neural sequence-to-sequence models have
led to promising results for end-to-end task-oriented dialog gen-
eration. Such frameworks enable a decoder to retrieve knowl-
edge from the dialog history and the knowledge base during
generation. However, these models usually rely on learned word
embeddings as entity representation, which is difficult to deal
with the rare and unknown entities. In this work, we propose a
novel enhanced entity representation (EER) to simultaneously
obtain context-sensitive and structure-aware entity representa-
tion. Our proposed method enables the decoder to facilitate both
the ability to fetch the relevant knowledge and the effectiveness
of incorporating grounding knowledge into the dialog gener-
ation. Experimental results on two publicly available dialog
datasets show that our model outperforms the state-of-the-art
data-driven task-oriented dialog models. Moreover, we conduct
an Out-of-Vocabulary (OOV) test to demonstrate the superiority
of EER in handling common OOV problem.
Index Terms: dialog systems, task-oriented dialog systems, en-
tity representation, natural language generation

1. Introduction
Task-oriented dialog systems, which aim to help users to ac-
complish specific tasks via natural language, have become an
increasingly important research area. With the success of the
sequence-to-sequence (seq2seq) architecture in text generation
[1, 2, 3, 4, 5], many works have attempted to model task-
oriented dialog systems as the seq2seq generation of response
from the dialog history and the external knowledge bases (KB)
[6, 7, 8, 9, 10]. This kind of fully data-driven end-to-end model-
ing scheme eliminates the requirement of hand-crafted slot fill-
ing labels, which is a promising way to build domain-agnostic
dialog systems.

Different from general seq2seq generation, knowledge-
grounded dialog generation requires to understand the user in-
tent, query external KB, and generate system responses with
grounding knowledge. Moreover, the ability to fetch the right
knowledge from KB is essential in task-oriented dialog systems,
because the responses are guided not only by the dialog history
but also by the query results [8]. One straightforward method
of existing works is to learn word embeddings for each entity
in the KB, and then encode the dialog history as query vector
to obtain the most relevant knowledge [7, 11, 12]. In addition,
another previously proposed method models KB with memory
network [13], which encodes each knowledge as memory el-
ements and uses multi-hop attention mechanism to select the
appropriate knowledge [8, 9, 10].

However, although the above mentioned approaches are
successful in incorporating knowledge into the dialog genera-
tion, they still suffer from heavily relying on learned word em-
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beddings as entity representation. For one thing, some of the
named entities in the KB or the dialog history occur less fre-
quently in the training set (e.g., a particular organization name)
and thus are difficult to learn a good word embedding, result-
ing in poor performance. For another, when the unseen entities
are encountered at test time (also known as OOV), it is prone to
lose some important information by mapping them to a special
token. Moreover, with large KB in real-world scenarios, learn-
ing word embeddings for each entity will cause an explosion
in the vocabulary size and the number of parameters. Regard-
ing these issues, learning a more flexible and informative entity
representation is very important.

To alleviate these limitations, we propose a novel enhanced
entity representation (EER) for task-oriented dialog generation,
which can deal with the rare or unseen entity problem. Our
model separately treats entities from two sources, i.e., the dialog
history and KB, and encodes these entities based on their own
context or attribute information. Specifically, the entities can
learn context-sensitive representation from the dialog context
since the surrounding words of each entity can provide some
meaningful and distinguishable information. On the other hand,
the structural and relational information in the KB are able to
endow each entity from the KB with structure-aware entity rep-
resentation. Through the above EER, we can reduce the depen-
dence of the learned entity embeddings and hence generalize
to the rare and unseen entities. Moreover, we further propose a
switching network to softly control the weight between context-
sensitive and structure-aware entity representation, which bet-
ter integrates knowledge into the dialog generation. Our ex-
periments on two publicly available datasets (InCar Assistant
dataset [7] and CamRest dataset [12]) show an improvement in
both entity F1 scores, and BLEU scores as compared to existing
state-of-the-art architectures. Our code is available on GitHub1.

2. Task Definition
Before describing our proposed method, we formally define the
dialog generation task. Given a dialog between a user (U) and
a system (S), we represent the t-turned dialog utterances as
{(U1, S1), ..., (Ut, St)}. Along with these utterances, each di-
alog is accompanied by a relational-database-like KB B, which
consists of |R| rows and |C| columns. In this sense, entities may
come from two sources, namely the dialog history that contains
l entities {eci}li=1 and the KB with eki,j the entity in the ith row
and j th column. At the tth turn of the dialog, we take the dia-
log history (U1, S1, ..., St−1, Ut) and the associated KB B as
input, and our goal is to generate a proper system response St.

3. Our Proposed Method
Figure 1 illustrates the architecture of our proposed model,
which consists of a context encoder, an entity encoder and a

1https://github.com/scoyer/EER

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-10373905



Figure 1: Architecture of the proposed model.

decoder. The context encoder encodes the dialog history into a
sequence of hidden vectors, while the entity encoder produces
context-sensitive representation for entities from dialog context
and structure-aware representation for entities from KB. Finally,
the decoder generate entity distribution and vocabulary distribu-
tion conditioned on the output of context and entity encoders.

3.1. Context Encoder

The context encoder concatenates all the m words in the di-
alog history as a sequence of tokens x = (x1, ..., xm), and
then employs a bi-directional gated recurrent unit (GRU) [14]
to transform the word sequence into a sequence of hidden vec-
tors. Specifically, the forward GRU reads input sequence x in
left-to-right direction while the backward GRU reads x in the
reversed direction:

−→
h i =

−−→
GRU(E(xi),

−→
h i−1), (1)

←−
h i =

←−−
GRU(E(xi),

←−
h i+1), (2)

where E(xi) is the word embedding of the token xi. We ob-
tain a hidden representation for each word xi by concatenating
the forward hidden state

−→
h i and the backward one

←−
h i, i.e.,

hi = [
−→
h i||
←−
h i]. Here, || denotes the concatenation. Thus, each

hidden vector hi contains the information about the ith word
with respect to all the surrounding words in both directions.

3.2. Entity Encoder

Entity encoder is designed to obtain entity representation from
two sources, namely the dialog history and KB. For entities in
the dialog history, we propose a simple and effective way to
produce context-sensitive representation. For entities in the KB,
they are first passed to an alignment function and then learn
structure-aware representation from the relational structure.

Context Entity Encoder. We first detect all the entities in
the dialog history. Let (ec1, ..., ecl ) be the entities in the dialog
history, and (p1, ..., pl) be their corresponding positions in the
input sequence x. For each entity eci , we first concatenate the
entity embedding and its hidden state calculated by context en-
coder, and then pass it to a nonlinear mapping function:

hci = fσ([E(xpi)||hpi ]), (3)

where fσ(·) is a single-layer feed-forward neural network with
ReLU [15] nonlinearity. Through combining the learned word
embedding and the contextual hidden states, entities with the
same value have different context-sensitive representation. For
the case of unseen entities, such entity representation is mean-
ingful since it captures the contextual information.

KB Entity Encoder. We regard every value of the KB as an
entity. Similar to the prior work [16], we introduce an aligned
context embedding to add soft alignments between entity and
similar words in the dialog history. Specifically, we define an
alignment function fa(eki,j) =

∑
t a
t
i,jE(xt), where the atten-

tion score ati,j captures the similarity between entity eki,j and
word xt. And ati,j is computed by the dot products between
nonlinear mappings of word embeddings:

ati,j =
exp(fσ(E(eki,j)) · fσ(E(xt)))∑
t′ exp(fσ(E(eki,j)) · fσ(E(xt′)))

. (4)

Then we concatenate the entity embedding and its correspond-
ing aligned context embedding, and pass it to a nonlinear map-
ping function:

hai,j = fσ([E(eki,j)||fa(eki,j)]). (5)

However, simply using the above alignment function to encode
each entity ignores the rich structure inherently in the KB. It’s
important to exploit the underlying relational structure to ob-
tain the structure-aware entity representation which improves
the performance of modeling KB. To this end, we regard the
entity to be encoded as a node in the graph and other entities in
the same row as neighboring nodes, and apply Relational Graph
Convolutional Networks (RGCNs) [17] to encode each entity:

hki,j = σ

(
W 0h

a
i,j +

1

|Ni,j |
∑

j′,j′ 6=j

W j′h
a
i,j′

)
, (6)

where {W j}|C|j=0 are trainable parameters, |Ni,j | is a normal-
ization constant that represents the number of entities except
for eki,j in the ith row, and σ(·) is an element-wise activation
function (e.g., ReLU). For each entity, it not only performs self-
transformation with current hidden representation, but also re-
ceives and aggregates the information from other entities in the
same row using relation-specific transformation. Thus, even if
the entities with the same value, they can capture more diverse
representation according to the relational structure.
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3.3. Decoder

Given the output of context and entity encoders, the decoder
uses a GRU to maintain a hidden sequence {st}nt=1. Let y =
(w1, ..., wn) be the referenced response, then st is defined by:

st = GRU(E(wt−1), st−1), (7)

where the initial hidden state s0 is fσ(hm). Based on {st}nt=1,
the decoder generates two distributions, namely the entity dis-
tribution about one over the entity set which contains all the en-
tities appearing in the dialog history and KB, denoted as P entity,
and the vocabulary distribution about one over all the generic
words in the vocabulary, denoted as P vocab.

Entity distribution consists of two parts: the context entity
distribution regarding the entities from the dialog history, de-
noted as P c, and the KB entity distribution about entities from
the KB, denoted as P k. At each time step, a match function is
used to measure the similarity between hidden state of decoder
and entity representation. Formally, for entities from the dialog
history, we have:

P ct (e) =
∑
i:e=eci

exp(sT
tW ch

c
i )∑

i′ exp(sT
tW ch

c
i′)
, (8)

where e represents entity in entity set and W c is a similarity
matrix to be learned. For entities from the KB, we employ
hierarchical attention mechanism to calculate the probability
for each entity from the KB. To detail, we first apply average
pooling over entities in the same row to compute the row-level
matching scores, and then calculate the entity-level matching
scores:

pri =
exp(sT

tW kh̄
k
i )∑

i′ exp(sT
tW kh̄

k
i′)
, (9)

pei,j =
exp(sT

tW kh
k
i,j)∑

j′ exp(sT
tW kh

k
i,j′)

, (10)

where W k is a similarity matrix to be learned and h̄
k
i is the

average pooling of {hki,j}
|C|
j=1. Thus, we have:

P kt (e) =
∑

i,j:e=eki,j

pri · pei,j . (11)

Switching Network. Instead of fusing context entity dis-
tribution and KB entity distribution by simple element-wise ad-
dition, we propose a switching network in analogy to [18]. The
switching network is a feed-forward neural network with sig-
moid output function that outputs a scalar probability of switch-
ing between context entity distribution and KB entity distribu-
tion. Let gt be the output probability, then we have:

gt = sigmoid(W gst + bg), (12)

P entity
t = gtP

c
t + (1− gt)P kt , (13)

where W g and bg are trainable parameters.
The decoder predicts a word in the vocabulary by attend-

ing over the output of context encoder and entity encoder, since
attention allows the decoder to dynamically decide the impor-
tance of context representation and entity representation. For-
mally,

ct = attn(st, {hi}mi=1), (14)

kt = gt
∑
i

pcih
c
i + (1− gt)

∑
i

pri h̄
k
i , (15)

P vocab
t = W v[st||ct||kt], (16)

where attn(query,memory) denotes the attention function [3],
and Wv is a trainable weight matrix. By concatenating st with
the attentive context vector ct and entity vector kt, the model
improves the ability of handling long-term dependency.

3.4. Training

Inspired by [9], we transform the system response y into sketch
sequence ys that excludes slot values but includes the slot tags.
For example, the system response “Valero is 1 mile away” is
transformed into “@poi is @distance away”, where @poi and
@distance are the slot tags that represent all the possible point
of interest (POI) and distance values respectively. We estimate
the parameters by minimizing negative log-likelihood of the en-
tity and vocabulary distribution. Let ys = (ws1, ..., w

s
n) be the

sketch sequence, then loss function is defined as:

L = −
n∑
t=1

(logP vocab
t (wst ) + logP entity

t (wet )). (17)

For the case where wt is a non-entity token, we train the P entity
t

to produce a special token @st, i.e., wet = @st. In the decoding
stage, we use a simple greedy strategy to generate the sketch
sequence. If the generated word is a slot tag, we choose the
entity with the highest probability of the entity distribution.

4. Experiments
4.1. Datasets

We evaluate our model on two public multi-turn task-oriented
dialog datasets: InCar Assistant dataset [7] and CamRest
dataset [19]. InCar includes three distinct domains: point-of-
interest navigation (Nav), weather information retrieval (Wea),
and calendar scheduling (Cal). For weather domain, we follow
[20] to separate the highest temperature, lowest temperature and
weather attribute into three different columns. For calendar do-
main, we ignore all the empty values for the case where there are
some dialogs with a incomplete KB. CamRest dataset contains
dialogs in restaurant reservation domain. We report our exper-
imental results based on the relabeled version [12]. Especially,
some human experts format the CamRest dataset by equipping
the corresponding KB to every dialog. For both datasets, we
detect entities in the dialog history with the global entity list
provided by the datasets. The train/validation/test sets of these
two datasets are split in advance by the providers. Table 1 sum-
marizes the statistics of the datasets.

Table 1: Statistics for two datasets.

InCar
CamRest

Nav Wea Cal

Vocabulary Size 1556 1164
KB Attribution Types 6 22 5 10
Train/Val/Test Dialogs 2425 / 302 / 304 406 / 135 / 136
Avg. Dialog Turns 2.3 5.1

4.2. Implementation Details

The model is trained end-to-end using Adam optimizer [21]
with a fixed batch size of 8, and learning rate annealing starts
from 1e−3 to 5× 1e−5. Embeddings of size 128 are randomly
initialized and updated during training. We set the hidden size
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Table 2: Comparison of our model with baselines.

InCar CamRest

Model BLEU F1 Nav F1 Wea F1 Cal F1 BLEU F1
Seq2Seq 11.58 23.81 28.55 25.95 13.37 17.20 45.83
Seq2Seq Attn 12.77 32.13 35.82 42.29 15.63 17.61 47.76
Mem2Seq 13.05 39.32 28.10 45.07 53.51 16.95 45.08
GLMP 14.76 57.73 50.55 58.87 69.05 18.74 53.24
Ours 17.16 59.04 52.47 57.78 71.84 20.74 57.07

of GRU to 128 for both encoder and decoder. The dropout rates
are set to 0.4 for InCar and 0.5 for CamRest. We apply gradient
clippling to 10 when its norm exceeds this value.

4.3. Baselines

We compare our model with following baseline models:

• Seq2Seq [2]: a standard seq2seq model with an encoder
and a decoder. To incorporate the knowledge into gener-
ation, we implement the seq2seq model using the same
training method as our model, i.e., the decoder is trained
to generate entity distribution and vocabulary distribu-
tion (see more details in sec 3.4).

• Seq2Seq Attn [4]: Seq2Seq model with attention over
the input context at each time step during decoding. Note
that compared with our model, Seq2Seq Attn model uses
learned embeddings as entity representation, while our
model encodes entities with proposed EER.

• Mem2Seq [8]: Mem2Seq models dialog history and KB
with a memory network and learns a pointer gate to con-
trol either generating a vocabulary word or selecting a
word from input as the output.

• GLMP [9]: GLMP model adopts a global memory en-
coder and a local memory decoder to incorporate the
shared external knowledge into the learning framework.

In our experiments, we train Seq2Seq and Seq2Seq Attn models
with the same parameter settings as our model. For Mem2Seq
and GLMP models, we run their official code with the suggested
hyper-parameters.

4.4. Results

Following the prior works [8, 9], we adopt two automatic
evaluation metrics to validate the performance of our model:
BLEU [22] and Micro Entity F1. BLEU metric is commonly
used to study the performance of task-oriented dialog mod-
els as it has been found to have strong correlation with huam
judgements [23]. We compute the BLEU score using the
multi-bleu.perl script from Moses. Entity F1 metric can
evaluate the ability to generate relevant entities from the pro-
vided KB. To compute entity F1 score, we micro-average the
precision and recall over the entire set of system responses.
Since our model does not have slot-tracking by design, we eval-
uate on entity F1 instead of the slot-tracking accuracy as in [24].

In Table 2, we observe that our model achieves the high-
est BLEU and entity F1 scores on both datasets. Compared
with model Seq2Seq Attn that learns word embeddings as en-
tity representation, our model has about 27% and 10% entity F1
score improvement for InCar and CamRest respectively. More-
over, our model outperforms the previous state-of-the-art model
GLMP in most domains, which further demonstrates the robust-
ness of EER. In addition, our model has a significant improve-

ment on BLEU, which shows that our model can effectively
incorporate knowledge into dialog generation.

Table 3: Results of OOV Test.

InCar CamRest

Model BLEU F1 BLEU F1
Seq2Seq 10.35 15.10 16.56 37.95
Seq2Seq Attn 10.64 17.81 16.76 39.59
Mem2Seq 11.37 23.30 13.59 40.29
GLMP 12.92 50.86 16.80 50.07
Ours 16.68 55.18 20.19 56.28

4.5. OOV Test

To validate the ability of solving the common OOV problem,
we conduct an OOV test where the entities that occur less fre-
quently in the dataset are removed from vocabulary. We observe
that most of the named entities from the KB are rare entities in
the datasets. Thus, we first drop all the entities that belong to
point-of-interest, location, event and name attributes from vo-
cabulary, which corresponds to Nav, Wea, Cal domains of InCar
and CamRest respectively. All these entities are then replaced
by a special unknown token unk. In this way, we can allevi-
ate the problem of the explosion in the vocabulary size and the
number parameters since we only regard the most frequent enti-
ties in the training corpus. We train all the models with the new
vocabulary of size 1458 for InCar and 1030 for CamRest.

In Table 3, We can see that Seq2Seq and Seq2Seq Attn
models have significant performance drop on entity F1, which
indicates that these two models rely on learned word embed-
dings for each entity. For Mem2Seq and GLMP models, they
slightly mitigate the OOV problem since the multi-hop atten-
tion mechanisms of memory network help in learning corre-
lations between memories [8]. Note that our model achieves
the least OOV performance drop on both BLEU and entity F1
scores over all the compared models, which demonstrates the
superiority of EER in handling OOV challenge.

5. Conclusion
In this paper, we propose a novel enhanced entity representa-
tion for end-to-end trainable task-oriented dialog systems. The
model enhances entity representation with contextual and struc-
tural information from the dialog history and the provided KB.
Moreover, we propose a switching network which enables the
decoder to better incorporate the knowledge into dialog gener-
ation. Experimental results show that the proposed model can
robustly represent entities, and outperforms existing state-of-
the-art models on two automatic evaluation metrics. Further-
more, we conduct an OOV test to demonstrate the effectiveness
of EER in dealing with the rare and unseen entities.
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