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Abstract
Perceptual evaluation of voice quality is widely used in laryngo-
logical practice, but it lacks reproducibility caused by inter- and
intra-rater variability. This problem can be solved by automatic
estimation of voice quality using machine learning. In the previ-
ous studies, conventional acoustic features, such as jitter, have
often been employed as inputs. However, many of them are
vulnerable to severe hoarseness because they assume a quasi-
periodicity of voice. This paper investigated non-parametric
features derived from amplitude and phase spectrograms. We
applied the instantaneous phase correction proposed by Yatabe
et al. (2018) to extract features that could be interpreted as indi-
cators of non-sinusoidality. Specifically, we compared log am-
plitude, temporal phase variation, temporal complex value vari-
ation, and mel-scale versions of them. A deep neural network
with a bidirectional GRU was constructed for each item of GR-
BAS Scale, a hoarseness evaluation method. The dataset was
composed of 2545 samples of sustained vowel /a/ with the GR-
BAS scores labeled by an otolaryngologist. The results showed
that the Hz-mel conversion improved the performance in almost
all the case. The best scores were obtained when using temporal
phase variation along the mel scale for Grade, Rough, Breathy,
and Strained, and when using log mel amplitude for Asthenic.
Index Terms: voice disorder, GRBAS Scale, short-time Fourier
transform, phase correction, recurrent neural network

1. Introduction
Speech medicine in the field of otolaryngology deals with vari-
ous voice disorders: laryngeal cancer, vocal cord paralysis, vo-
cal cord polyps, and functional dysphonia. Hoarseness is not
only the result of some voice disorder, but it can also cause a
decrease in quality of life (QOL). Therefore, the evaluation of
voice quality is an important diagnostic item. There are two
methods for evaluating pathological voice quality: auditory-
perceptual evaluation and acoustic analysis. In clinical practice,
perceptual evaluation is used more often because voice quality
is fundamentally perceptual in nature [1].

Acoustic analysis is an objective method of quantitative
voice quality evaluation using acoustic features considered to be
related to hoarseness. To date, many features have been devised,
including jitter, shimmer, harmonic-to-noise ratio, spectral and
cepstral features. Many of them assume quasi-periodicity of
voice; hence they are vulnerable to non-stationary severe hoarse
voice [2]. In addition, it is difficult to interpret them intuitively
in relation to auditory impression. Therefore, acoustic analysis
is an adjunct to auditory psychological evaluation. In contrast,
auditory-perceptual evaluation is subjective; thus, this method
inevitably lacks of reproducibility owing to inter- and intra-rater

variation [3, 4].
GRBAS scale [5] is one of the most accepted auditory-

perceptual evaluation methods. The scale consists of five mea-
sures: grade of hoarseness (G), rough (R), breathy (B), asthenic
(A), and strained (S). For each item, clinicians provide a score
of 0 (normal), 1 (slight), 2 (moderate) or 3 (severe). It has
been suggested that items G, R and B are relatively reproducible
when evaluated by a skilled person, whereas the reproducibility
is lower for A and S [3, 4].

The problem of auditory psychological evaluation can be
solved by automatic estimation based on machine learning.
Computer-based estimation ensures reproducibility. Besides, if
the automatic estimation system can evaluate voice quality at
the same level as clinicians, then its validity can be considered
sufficient. Many of the previous studies have used acoustic fea-
tures derived from acoustic analysis [6, 7]. However, as men-
tioned earlier, many of the features are parametric and are not
robust to severe hoarse voices. On the other hand, in the fields
of acoustic scene classification and speech recognition, high-
dimensional data such as spectrograms have been used as input
features [8]. The handling of high-dimensional data has been
made possible by deep learning. A similar approach could be
extended to the evaluation of pathological voice quality.

The purpose of this study is to investigate the effective-
ness of deep learning with spectrogram input for the evalua-
tion of pathological voice quality. Although only the ampli-
tude of spectrogram is often used [8], several studies have sug-
gested that phase may contain useful information about hoarse-
ness [9, 10]. Therefore, both amplitude and phase should be
investigated. In this paper, we compared six spectrogram vari-
ations: amplitude, temporal variation of the phase or complex
spectrogram, and a Hz-mel converted version of them. For the
investigation, we constructed a deep neural network to output
GRBAS scores using information derived from the spectrogram
of sustained vowel /a/ as input.

2. Methods
2.1. Spectrogram

The short-time Fourier transform (STFT) of a signal is ordi-
narily called a complex spectrogram. In this paper, a (com-
plex) spectrogram is defined as an instantaneous phase cor-
rected STFT (iPC-STFT) of a signal proposed by Yatabe et
al [11, 12, 13]. The instantaneous phase correction facilitates
intuitive interpretation and technical application of the phase.
This study considered the amplitude and phase of spectrograms
defined above. Also, we investigated the application of mel-
frequency scale to the phase, which has been done only for the
amplitude thus far.
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2.1.1. Instantaneous phase correction

Instantaneous phase correction [11, 12, 13] is a method that fo-
cuses on the properties of the phase spectrogram of sinusoidal
waves. So, let us first investigate its nature. The following ex-
planation should be referred to [11, 12, 13].

The STFT of a signal x(t) with respect to a fixed real win-
dow function w(t) is defined as

Fwx(m,n) =

an+L−1∑
l=an

x(l)w(l − an)e−2πiml/L, (1)

where i =
√
−1, L ∈ N is the length of w(t), n ∈ N and m ∈

N are the time and frequency indices respectively, and a ∈ N is
the time-shifting step. For a complex sinusoid x(l) = e2πiξl/L

where ξ ∈ R, the following relationship holds when there exists
a certain frequency index m such that ξ = m:

Fwx(ξ, n+ 1) = Fwx(ξ, n) =

L−1∑
l=0

w(l). (2)

However, if the condition is removed, ξ cannot be assigned as
a frequency index. For any frequency index m, the following
relation holds:

Fwx(m,n+ 1)e−2πiaδ/L = Fwx(m,n), (3)

where δ = ξ − m is the deviation; thus, the STFT’s phase
φ(m,n) (with appropriate unwrapping) has the following rela-
tion:

φ(m,n+ 1) = φ(m,n) +
2πδ

L
. (4)

The last term 2πδ/L is caused by discretization. In fact, the
deviation δ corresponds to the relative instantaneous frequency
∂φ/∂n. This indicates that, for the sinusoidal wave, the phase
in the next frame is predictable from the phase and instanta-
neous frequency in the current frame.

Instantaneous phase correction aims to reduce the amount
of mismatch between the frequencies of a sinusoid and fre-
quency bins [12]. For this purpose, relative instantaneous fre-
quency is used. The iPC-STFT of a signal x(t) with respect to
a fixed real window w(t) was proposed in [11]:

Fw
iPC = A�Fw, (5)

where A(m,n) is the instantaneous phase correction matrix de-
fined by

A(m,n) =

n−1∏
η=0

exp

(
−2πi

∂φ(m,n)

∂n

∣∣∣∣
n=η

/L

)
(6)

with A(m, 0) = 1 for all m, and � is the Hadamard product
(this notaion is according to [13]). As mentioned at the begin-
ning of this subsection, we refer to an iPC-STFT as a (complex)
spectrogram in particular.

For a signal composed of three sinusoidal waves with back-
ground noise, the STFT and the iPC-STFT are shown in Fig-
ure 1. In the frequency bins containing a frequency compo-
nent of by the sinusoidal waves, the phase of STFT is rotated,
while that of iPC-STFT is almost constant. In other words,
concerning the iPC-STFT, the difference of the phase between
the adjacent frames is almost zero in the sinusoid-dominated
frequency bins, while it takes seemingly random values in the
other bins. That is, instantaneous phase correction makes the
existence of a sinusoidal component more distinctive; hence, in-
stantaneous phase correction has been applied to some applica-
tions enhancing or distinguishing sinusoidal components such
as speech enhancement [11] and harmonic/percussive source

Figure 1: Spectrograms of a signal composed of three sinu-
soidal waves with background noise. Note that the amplitude of
the STFT and that of the iPC-STFT are the same. The color map
for the phase spectrograms is cyclic to resolve the phase discon-
tinuity. Due to the effect of instantaneous phase correction, the
phase of the iPC-STFT is almost constant in the frequency bins
affected by the sinusoidal waves.

separation [13]. Incidentally, pathological voice is character-
ized by its non-stationarity, fluctuation, and high noisiness com-
pared to the normal voice. Therefore, we could expect that the
iPC-SPEC might include these characteristics as phase varia-
tions. This is why we adopted iPC-STFT instead of the usual
STFT.

2.1.2. Input features

In this study, we considered the following spectrograms as the
input features: log-amplitude spectrogram (LogAmp), absolute
temporal difference of phase spectrogram (DiffPhase), and ab-
solute temporal difference of complex spectrogram (DiffCom-
plex). They are defined as follows:

LogAmpwx = 10 log10 |F
w
iPCx|2, (7)

DiffPhasewx = |DtUt∠Fw
iPCx|, (8)

DiffComplexwx = 10 log10 |DtFw
iPCx|2, (9)

where w is a real window function, Dt is the temporal differ-
ence (Dtz)(m,n) = z(m,n)−z(m,n−1), Ut is the temporal
phase unwrapping, and ∠ is the angle. LogAmp is used in vari-
ous applications and it can be intuitively interpreted. DiffPhase
can be considered as a measure of non-sinusoidality. As already
mentioned in the previous part, DiffPhase is almost zero in the
sinusoid-dominated frequency bins, while it takes seemingly
random values in other bins. We expected DiffPhase to contain
information attributable to pathological voice characteristics
such as non-stationarity. DiffComplex differs from the other
two features in that it takes amplitude and phase into account
simultaneously. DiffComplex appears in the computation of a
feature called “phase corrected total variation (PCTV)” [11, 14].
The PCTV is defined as the l1 norm of DtFw

iPCx. In fact, in or-
der to improve the PCTV, instantaneous phase correction was
introduced in [11]. DiffComplex is expected to reflect the pres-
ence of noise or fluctuating components. DiffPhase could be
interpreted as the ‘ratio’ of non-sinusoidality to sinusoidality,
while DiffComplex as the ‘strength’ of non-sinusoidality.

In addition to the above features, a Hz-mel conversion was
also taken into consideration. The mel scale [15] is a percep-
tually proportional scale of pitch based on human hearing. The
evaluation of pathological voice quality is exactly based on hu-
man hearing; thus, it is expected that the conversion would be
an effective dimensionality reduction. Traditionally, the con-
version has been applied only to amplitude spectrograms, but in
this paper, it is also applied to the other two features. The mel
versions are as follows: log mel amplitude spectrogram (Mel-
LogAmp), mel absolute temporal difference of phase spectro-
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Figure 2: The heatmap of the input features calculated from a sustained vowel /a/. The voice was rated as G3 R0 B3 A0 S1 by the
doctor who gave all the scores of our dataset for the experiment.

gram (MelDiffPhase), mel absolute temporal difference of com-
plex spectrogram (MelDiffComplex). They are calculated by

MelLogAmpwx = 10 log10 M(|Fw
iPCx|2), (10)

MelDiffPhasewx = M |DtUt∠Fw
iPCx|, (11)

MelDiffComplexwx = 10 log10 M(|DtFw
iPCx|2), (12)

where M is the Hz-mel conversion, and other symbols are the
same as in Eq. (7)–(9).

Figure 2 shows the heatmap of the features calculated from
a sustained vowel /a/. They were used as the input to a DNN
described below.

2.2. Deep Neural Network

In this study, we constructed a DNN with a bidirectional
GRU [16] and fully connected layers. Independent DNNs were
constructed for each GRBAS item. They input the spectral se-
quences of input features and output a score of 0, 1, 2 or 3 as a
solution to the classification problem.

Table 1 shows the block diagram of the DNN. The dynamic
standardizer updates its running mean and variance each time a
new input comes, and then uses them to standardize the input so
that the standard deviation is 1 and the mean is 0. Note that the
standardization is done independently for each frequency bin.
The update rule of running statistics is as follows:

x̂new = 0.9x̂current + 0.1xinput, (13)

where x̂new is the new running statistic, x̂current is the current
running one, and xinput is the observed value calculated from the
new input. Dropout [17] and l2 regularization are introduced to
reduce overfitting, and gradient norm clipping [18] is applied
to suppress gradient explosion [18]. We trained the DNN using
the cross-entropy error as a loss function and Adam [19] as an
optimizer.

3. Experimental Results
3.1. Database

We built a database consisting of 2545 samples (524 females
and 859 males) of sustained vowel /a/. 2475 samples (504 fe-
males and 809 males) were pathological voice samples recorded

Table 1: The structure of the DNN. Data flows from top to bot-
tom in forward propagation, and from bottom to top in back-
propagation. The value in parentheses represents the dimension
of output (X is the total number of the frequency bins of one in-
put feature, N is the parameter for the hidden size). The output
sequences of the forward and reverse layers of the bidirectional
GRU are averaged over time and then combined as inputs to
the subsequent layers. The structure of the “hidden layer” in
the left table is as shown in the right. The last output dimension
of the DNN is four in order to output the score of 0, 1, 2, or 3 as
a solution to the classification problem.

DNN

Input (X)
Dynamic standardizer (X)

Fully connected (N )
Bidirectional GRU (2N )

Dropout (2N )
0–2 hidden layers (2N )

Fully connected (4)
Output (4)

A hidden layer

Input (2N )
Fully connected (2N )

ReLU (2N )
Dropout (2N )
Output (2N )

at Kyushu University Hospital, and the remaining 70 samples
(20 females and 50 males) were healthy voice samples recorded
at the Ohashi Campus of Kyushu University. The causes of
voice disorders included vocal cord paralysis, laryngeal can-
cer, vocal cord polyps, and spasmodic dysphonia. Although
the recording environment was not consistent, each sample was
recorded in a soundproof room with a microphone having a
relatively flat frequency response. One expert otolaryngolo-
gist rated and labeled the GRBAS scores to each sample. The
sound was played from headphones (MDR-CD900ST, SONY)
through an audio interface (UA-25EX, cakewalk by Roland)
connected to a PC. For the rating, the sampling frequency was
set to 48 kHz (the original sampling frequency was either 48
kHz, 50 kHz, or 96 kHz).

3.2. Experiments

From the database, we computed all the features described in
Section 2.1.2. Before the feature extraction, the sampling fre-
quency was downsampled to 16 kHz. For the framing of iPC-
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Figure 3: The results from five-fold cross validation. The statistic on the vertical axis is linear weighted Cohen’s kappa index κL. Error
bars represent the standard deviation. The test dataset was evaluated using the model obtained through the training when the loss to
the validation dataset was the minimum. The value for each GRBAS item and each feature was obtained using DNN parameter values
with the highest κL.

STFT, we used a 512-sample Hann window, with shifts of 128
samples. The mel filterbank consisted of 80 triangular filters.
Each filter was normalized for the area (l1 norm) to be one. As
a definition of the mel scale, the implementation by Slaney [20]
was used. The value of each spectrogram was normalized from
zero to one. The total number of frequency bins was 257 for
iPC-STFT and 80 for mel-scale features.

We constructed and tested the DNN models using Py-
Torch [21]. For some parameters of the DNN, We executed
a grid search: the parameter N for hidden size in Table 1 was
either 128, 256, or 512, and the number of hidden layers was
either two, three, or four. The parameters for the training were
set as follows. The learning rate was 0.001, the weight of the l2

regularization was 0.001, the gradient norm clipping threshold
was 1.0, the dropout rate was 0.5, and the batch size was 128.
The training was terminated when the minimum loss value was
not updated for 15 epochs in succession.

For each GRBAS item, we compared the following
eight features: LogAmp, DiffPhase, DiffComplex, Mel-
LogAmp, MelDiffPhase, MelDiffComplex, the combined vec-
tor of LogAmp and DiffPhase (LogAmp+DiffPhase), the
combined vector of MelLogAmp and MelDiffPhase (Mel-
LogAmp+MelDiffPhase). Five-fold cross validation was used
to evaluate the performance. We used 300 samples for the test
and the rest samples were for training and validation (the speak-
ers for the test and those for the training and validation were
completely separated). Table 2 shows the distribution of the
dataset.

Table 2: The dataset distribution.
Division Score G R B A S

Test 0 30 89 92 160 97
1 90 110 102 97 101
2 90 63 67 37 65
3 90 38 39 6 37

Training/ 0 198 634 698 1614 827
Validation 1 1059 1071 867 544 1018

2 614 386 431 81 293
3 374 154 249 6 107

3.3. Results and Discussion

Figure 3 shows the experimental results. We evaluated the per-
formance with linear weighted Cohen’s kappa index κL [22],
which takes into account the possibility of the agreement occur-
ring by chance. The κL value indicates the strength of agree-
ment, with a maximum of 1. For all GRBAS items, Hz-mel
conversion improved the performance; except for DiffComplex

and MelDiffComplex for item A. The comparison of features
with Hz-mel conversion was as follows. The highest values for
items G, R, A, and S were obtained by MelLogAmp+MelDiff-
Phase; that for item B by MelDiffPhase. The lowest values for
items G, R, B, and S were obtained by MelDiffComplex; that
for item A by MelDiffPhase. In the Landis and Koch’s bench-
mark [23], the best scores in Figure 3 are ranked as follows:
substantial for G and B; moderate for R and S; slight for A.
Also, when comparing MelLogAmp and MelDiffPhase, MelD-
iffPhase outperformed MelLogAmp for items G, R, B, and S,
while MelLogAmp did MelDiffPhase for item A.

The Hz-mel conversion, which is a linear map to a lower
dimension, could be represented by fully connected layers in
the DNN. In other words, the ‘raw’ spectrogram without the
Hz-mel conversion contains abundant information. Neverthe-
less, in the present study, we find that the Hz-mel conversion
is effective in almost all cases. The results suggest that Hz-
mel conversion is a dimensionality reduction that can retain im-
portant information for auditory impressions. Also, the size of
our dataset might have been too small for the dimension of raw
spectrograms.

In this paper, we showed that valuable information can be
extracted from the phase using the instantaneous phase correc-
tion. Besides, for items G, R, B, and S, the phase information
was more effective than the amplitude information. This sug-
gests that the phase variation could contain information specific
to hoarseness, such as noise, non-stationarity, and fluctuation.
Only for item A, the amplitude information had more contri-
bution. This implies that asthenic can be associated with am-
plitude. The complex value variation was less effective. We
suspect that one of the reasons for this might be the ambigu-
ity of the harmonic structure in the complex value variation, as
seen in Figure 2.

4. Conclusions
In this paper, we investigated the automatic estimation of patho-
logical voice quality using the DNN, which inputted the infor-
mation derived from amplitude and phase spectrograms. The
temporal variation of phase with the instantaneous phase cor-
rection was shown to be effective in the evaluation of patholog-
ical voice. The experimental results suggest the complementar-
ity of amplitude and phase spectrograms and the importance of
considering both together. Future work should exploit a convo-
lutional neural network, that can utilize the amplitude and phase
in the time-frequency plane.
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