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Abstract

To adapt the speaker verification (SV) system to a target do-

main with limited data, this paper investigates the transfer learn-

ing of the model pre-trained on the source domain data. To

that end, layer-by-layer adaptation with transfer learning from

the initial and final layers of the pre-trained model is investi-

gated. We show that the model adapted from the initial layers

outperforms the model adapted from the final layers. Based

on this evidence, and inspired by the works in image recogni-

tion field, we hypothesize that low-level convolutional neural

network (CNN) layers characterize domain-specific component

while high-level CNN layers are domain-independent and have

more discriminative power. For adapting these domain-specific

components, angular margin softmax (AMSoftmax) applied on

the CNN-based implementation of the x-vector architecture. In

addition, to reduce the problem of over-fitting on the limited

target data, transfer learning on the batch norm layers is inves-

tigated. Mean shift and covariance estimation of batch norm

allows to map the represented components of the target domain

to the source domain. Using TDNN and E-TDNN versions of

the x-vectors as baseline models, the adapted models on the de-

velopment set of NIST SRE 2018 outperformed the baselines

with relative improvements of 11.0 and 13.8 %, respectively.

Index Terms: Speaker recognition, speaker verification, super-

vised adaptation, batch norm, transfer learning

1. Introduction

In recent years, deep neural networks (DNNs) have been suc-

cessfully applied to several machine learning fields including

computer vision, speech recognition, or natural language pro-

cessing [1, 2, 3]. Similar to the mentioned fields, DNN-based

models were investigated for text-independent SV [4, 5, 6], as

well as text-dependent SV tasks [7, 8, 9]. Domain compensation

is one of the recent challenges in the speaker recognition field.

In the recent NIST SRE challenges, one of the main interests

was a language mismatch. To alleviate the language mismatch

problem, several domain adaptation techniques were recently

proposed [10, 11, 12, 13, 14]. In [10], an adversarial method for

unsupervised discriminative domain adaptation was proposed.

For reducing the domain mismatch in i-vector and x-vector SV

systems, semi-supervised nuisance attribute network (SNAN)

was introduced in [11]. Instead of computing the domain vari-

ability from the dataset means, maximum mean discrepancy

(MMD) was used as part of the loss function. [15], addressing

the face recognition, has shown that high-level CNN layers are

potentially domain-independent and can be used for extracting

the embedding and modeling the target identities. On the other

hand, low-level CNN layers represent domain-specific compo-

nents and adaptation of these domain-specific units (DSUs) al-

lows mapping of these components from the target to the source

domain.

This paper investigates the domain adaptation problem, em-

ploying the pre-trained model on source data and adapted to the

target domain using limited resources. Specifically, layer-by-

layer adaptation is explored with the transfer learning from the

initial and final layers of the pre-trained models. Experimen-

tal results suggest that DSUs from the initial layers were more

informative for mapping the represented components from the

target to the source domain. For supervised adaptation using

limited amount of data in target domain, instead of applying

transfer learning on all the weights, adaptation of batch norm

layers to the target domain is applied. This simple yet power-

ful domain adaptation method showed significant improvement

in image processing field [16, 15, 17]. Two parameters of the

batch norm (β and γ) shift the mean of the represented fea-

tures and estimate the covariance of the data to map the limited

target domain to the source domain. CNN-based implementa-

tion of x-vector architecture with angular margin softmax (AM-

Softmax) loss is investigated to adapt DSUs. Employment of

AMSoftmax loss increases the discriminability of the extracted

features [18]. Two versions of x-vector implementation, with

five [5] or ten [19] frame-level layers, are applied before the sta-

tistical pooling layer (denoted as TDNN and E-TDNN, respec-

tively). An augmented version of CMN2 part of the evaluation

set of NIST SRE 2018 was used as adaptation set. The adapted

models on the CMN2 part of the development set of NIST SRE

2018 outperformed the non-adapted models relatively by 11.0

and 13.8 %, respectively in equal error-rate.

The rest of this paper is organized as follows: Employment

of AMSoftmax on x-vector architectures is described in Sec-

tion 2. Domain adaptation using batch norm transfer learning is

investigated in Section 3. The experimental setup and analysis

of results are given in Section 4. Finally the paper is concluded

in Section 5.

2. SV systems with AMSoftmax

Here, two SV systems using AMSoftmax are developed. The

systems are generally based on the x-vector implementation [5,

19].

The large margin softmax loss can be written as:

LLMS = −
1

N

N∑

i=1

log
es.ψ(θyi )

es.ψ(θyi ) +
∑C

j=1,j 6=i e
s.cos(θj)

, (1)

where cos(θj) is the angle between j-th column of weights in

the output layer and the input of the last layer, s is the scaling

factor which causes convergence, and ψ(θyi) is an angle func-

tion defined as:

ψ(θyi) = cos(m1θyi +m2)−m3, (2)

where, m1, m2, and m3 are individual coefficients for angu-

lar softmax (ASoftmax), additive angular margin softmax (Arc-
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Voxceleb 2 consists of 1,128,246 utterances from 6,112 speak-

ers.

To increase the amount and diversity of the existing train-

ing data, SRE and SWBD datasets are augmented with additive

noise and reverberation. For reverberation and noise, RIR, and

MUSAN datasets are used, respectively4. The strategy for aug-

menting the data is similar to x-vector system [5].

As adapting the DSUs requires labeled data (i.e. super-

vised adaptation method), CMN2 part of the evaluation set of

NIST SRE 2018 is used. This set contains 188 unique speak-

ers with 13,451 segments. For increasing the variability of this

dataset, data augmentation is applied (similar to Section 2, how-

ever, for increasing the size of the data, we did not apply any

sub-sampling). The final size of the adaptation set is 67,255

segments.

4.2. Experimental Setup

After down-sampling the speech data to 8 kHz, 23-dimensional

MFCCs are extracted with 25 ms window from speech, with

10 ms frame-shift. Band-pass filtering is applied between 20

to 3700 Hz. Log of energy is added to the feature vector and the

extracted speech features are mean-normalized over a sliding

window of up to 3 seconds. Energy-based voice activity detec-

tion (VAD) is used to remove non-speech frames. For training

the x-vector, a chunk size of speech frames is chosen between

200 to 400 frames. For training the model from extracted fea-

tures, the Tensorflow code is applied5. In our network architec-

ture, instead of TDNN layers, CNN layers are employed. As

the number of parameters in TDNN architecture is smaller than

E-TDNN one, we did not apply dilation and the kernel size of

the first three layers is set with values of 5, 5, and 7, respec-

tively. However for E-TDNN architecture, similar to [19], di-

lation is set to 2, 3, and 4 in the third, fifth, and seventh layer,

respectively. For tuning the margin of AMSoftmax and Arc-

Softmax, some experiments were performed with 0.1, 0.15, and

0.2 margins. Based on the preliminary results, 0.15 margin in-

dicates the best performance. In extraction time, a chunk size of

100 seconds (10,000 frames) with a minimum size of 250 ms is

used, while for longer utterances, the average x-vector from in-

put chunks is extracted. In the PLDA back-end, the dimension

of LDA is set to 150.

As the VCELEB dataset contains more than 1.2 M utter-

ances, we did not apply data augmentation. The x-vector sys-

tem is trained on the combination of VCELEB and augmented

versions of SWBD and SRE datasets. First, we train the PLDA

classifier on augmented version of SRE. PLDA adaptation to

target domain is then performed using Bayesian maximum a

posteriori (MAP) estimation on test part of evaluation set of

SRE 2018. Nevertheless, we realized that training the LDA and

PLDA with in-domain data (i.e. using augmented version of the

evaluation set of SRE 2018) will provide better performance on

the development set of SRE 2018. The development set of SRE

2018 is used for initial evaluations, selecting the score normal-

ization method, and calibration.

For layer-by-layer adaptation, the last layer of the pre-

trained model is changed to the fully connected layer with out-

put size of the number of speakers in the adaptation set. For

regularization, dropout layer with 40% dropout rate is applied

before the final output layer. The development set of SRE 2018

4http://www.openslr.org
5Partially the code from https://github.com/mycrazycracy/tf-kaldi-

speaker was used in this implementation which internally uses Kaldi
speech recognition toolkit [25].

is used for selecting the score normalization method and cali-

bration.

4.3. System Performance and Results

As mentioned above, all SV systems are evaluated on the

CMN2 part of the development set of NIST SRE 2018. The

same set is used for calibration and score fusion.6 To investi-

gate the effect of adapting the DSUs, first, we adapt all the W ,

β, and γ parameters. Under this condition, just adapting the first

layer slightly improved the performance, while adapting more

layers caused over-fitting on the small adaptation set. In addi-

tion, process of adaptation from the first layers outperformed

the adaptation from the last layers. This observation satisfied

the hypothesis that low-level CNN layers can be considered as

domain-specific representations. The result of layer-by-layer

adaptation from the initial, or from the final layer is shown in

Table 1. Based on the observed results, initial layers are more

informative for domain adaptation. However, because of using

the limited adaptation set, increasing the number of adaptation

layers causes over-fitting on the adaptation data.

Table 1: Investigation of layer-by-layer adaptation from the ini-

tial and final layers of TDNN architecture on the CMN2 part

of development set of NIST SRE 2018 without score normal-

ization and in-domain PLDA. Numbers with beg or end (e.g.,

2 beg and 2 end) are combination of training parameters from

the first and the last 2 layers, respectively. Transfer learning

is done with updating the parameters of the mentioned layers.

EER: Equal Error Rate, min C: minimum Decision Cost Func-

tion.

Adapt Set TDNN

EER (%) min C

baseline 6.9 0.418

1 beg 6.4 0.428

2 beg 12.9 0.750

3 beg 12.0 0.784

1 end 6.9 0.511

2 end 7.5 0.513

3 end 8.5 0.550

To alleviate the problem of over-fitting on limited adapta-

tion data, we performed experiments for adapting the β and γ

parameters individually and at the same time. Under this con-

dition, with mean shift and scaling the covariance of the batch

norm layers, the target domain mapped to the source domain.

Based on these results, we hypothesize that language mismatch

between source and target domains is more complex to be mod-

eled in one single input layer, however for adapting with lan-

guage mismatch, deeper input layers are more informative than

the final layers. In addition, mean shift and covariance estima-

tion of batch norm layers will help to adapt the target domain

with limited amount of data. Individual adaptation of β and γ

parameters are shown in Table 2. The result of combined adap-

tation of β and γ parameters on TDNN and E-TDNN architec-

tures are shown in Table 3.

For TDNN SV systems, individual adaptation of β and γ

parameters relatively outperformed the baselines with 7.6 and

7.0 %, respectively in equal error-rate. Adapting the β and γ

parameters from the first three initial layers showed the best

performance. Similar pattern was observed for E-TDNN SV

systems.

6Fusion and calibration were performed using the Bosaris toolkit.
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Table 2: Individual layer-by-layer adaptation of β and γ pa-

rameters of batch norms. Results of TDNN and E-TDNN ar-

chitectures on the CMN2 part of development set of NIST SRE

2018 without score normalization and in domain PLDA. Num-

bers with beg (e.g., 4 beg) are combination of batch norm pa-

rameters (β or γ for individual parameter adaptation) from the

first 4 layers. Transfer learning was done with updating the

parameters of the mentioned layers.

Adapt Set TDNN/E-TDNN

adapting β adapting γ

EER (%) min C EER (%) min C

baseline 6.97/6.91 0.418/0.47 6.97/6.91 0.421/0.47

1 beg 6.63/6.58 0.417/0.463 6.8/6.78 0.464/0.453

2 beg 6.61/6.46 0.417/0.444 6.71/6.62 0.457/0.444

3 beg 6.44/6.42 0.412/0.439 6.48/6.45 0.418/0.441

4 beg 6.45/6.44 0.414/0.441 6.73/6.60 0.450/0.441

5 beg 6.53/6.51 0.416/0.453 6.81/6.79 0.460/0.451

6 beg 6.63/6.57 0.426/0.473 6.86/6.83 0.482/0.471

7 beg -/6.58 -/0.469 -/6.59 -/0.474

8 beg -/6.60 -/0.473 -/6.56 -/0.483

9 beg -/6.59 -/0.476 -/6.55 -/0.481

10 beg -/6.61 -/0.484 -/6.73 -/0.491

11 beg -/6.67 -/0.493 -/5.97 -/0.472

Adapting the β parameters of the batch norm layers, shifts

the mean of the represented components of the target domain

to the source domain. γ parameters adaptation, scales the co-

variance of the represented components of the target domain to

the source domain. Adaptation of combination of these two pa-

rameters shows better performance. Here, adapting the β and γ

parameters from the first four initial layers showed the best per-

formance. The number of layers for transfer learning is relevant

to the size of adaptation dataset. For TDNN and E-TDNN x-

vector SV systems, the adapted models on the CMN2 part of the

development set of NIST SRE 2018 outperformed the baselines

with relative improvements of 11.0 and 13.8 %, respectively in

equal error-rate.

In Table 4, score normalization and in-domain PLDA adap-

tation results are reported. Using smaller in-domain dataset

is one of the main reasons for observing the current perfor-

mance with respect to the top reported systems in NIST SRE

2019 challenge. TDNN-AM and E-TDNN-AM are the systems

when AMSoftmax is applied on the TDNN and E-TDNN ar-

chitectures. TDNN-AM-BNAD and E-TDNN-AM-BNAD are

the results of the proposed batch norm adaptation on top of

TDNN and E-TDNN systems, respectively. Based on the ob-

served results except min C for E-TDNN-AM-BNAD, the pro-

posed batch norm adaptation technique significantly improved

the performance of the SV systems. With normalized scores

and in-domain PLDA, for the CMN2 part of development set

of NIST SRE 2018 dataset, in terms of equal error-rate (EER),

for the TDNN and E-TDNN SV systems the adaptation mod-

els improved relatively by 9.8 and 7.0 %, respectively. Similar

pattern was observed for the evaluation set of NIST SRE 2019.

In this set, in terms of equal error-rate, for the TDNN and E-

TDNN SV systems, the adaptation models improved relatively

by 9.4 and 8.9 %, respectively. Observing the similar pattern

for both sets shows the generalizability of the proposed adapta-

tion method.. E-TDNN-AM-BNAD gives the best performance

across the individual SV systems. Each SV system is calibrated

before the final score fusion. For score fusion, logistic regres-

sion was used. For the evaluation set of SRE 2019, the fused

score is reported.

Table 3: Combined layer-by-layer adaptation of β and γ pa-

rameters of TDNN and E-TDNN architectures on the CMN2

part of development set of NIST SRE 2018 without score nor-

malization and in domain PLDA. Numbers with beg (e.g., 4 beg)

are combination of batch norm parameters (β and γ) from the

first 4 layers. Transfer learning was done with updating the

parameters of the mentioned layers.

Adapt Set TDNN/E-TDNN

EER (%) min C

baseline 6.97/6.91 0.418/0.47

1 beg 6.63/6.43 0.408/0.473

2 beg 6.56/6.46 0.417/0.444

3 beg 6.25/6.29 0.396/0.439

4 beg 6.18/5.95 0.381/0.425

5 beg 6.54/6.16 0.404/0.437

6 beg 6.54/6.25 0.408/0.453

7 beg -/6.22 -/0.467

8 beg -/6.08 -/0.483

9 beg -/6.15 -/0.487

10 beg -/6.20 -/0.500

11 beg -/5.97 -/0.455

Table 4: Results on the CMN2 part of development set of NIST

SRE 2018 and evaluation set of NIST SRE 2019 datasets for

all systems presented with in-domain PLDA as provided by the

NIST toolkit.

System SRE18 Dev/SRE19 Evaluation Set

EER (%) min C

TDNN-AM 5.88/5.17 0.355/0.444

TDNN-AM-BNAD 5.30/4.68 0.333/0.432

E-TDNN-AM 5.25/4.81 0.319/0.428

E-TDNN-AM-BNAD 4.88/4.38 0.317/0.420

Fusion 4.42/3.96 0.251/0.367

5. Conclusions

As a supervised model for domain adaptation with limited data,

in this paper, we investigated the layer-by-layer adaptation from

the initial and final layers of the pre-trained model. We observed

that low-level CNN layers are more domain-specific features.

In addition, for reducing the over-fitting problem, we investi-

gated the adaptation using transfer learning of batch norm pa-

rameters. Based on the observed results, we hypothesize that

language mismatch is more complex to be modeled in one sin-

gle input layer, however for modeling the language mismatch,

deeper input layers are more informative than the final layers.

In addition, mean shift and covariance estimation will help to

adapt the target domain with limited amount of data.
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