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Abstract

In this paper, we present a new approach for the enrollment pro-
cess in a deep neural network (DNN) system which learns the
speaker model by an optimization process. Most Speaker Ver-
ification (SV) systems extract representations for both the en-
rollment and test utterances called embeddings, and then, these
systems usually apply a similarity metric or complex back-ends
to carry out the verification process. Unlike previous works, we
propose to take advantage of the knowledge acquired by a DNN
to model the speakers from the training set since the last layer
of the DNN can be seen as an embedding dictionary which rep-
resents train speakers. Thus, after the initial training phase, we
introduce a new learnable vector for each enrollment speaker.
Furthermore, to lead this training process, we employ a loss
function more appropriate for verification, the approximated
Detection Cost Function (aDCF ) loss function. The new strat-
egy to produce enrollment models for each target speaker was
tested on the RSR-Part II database for text-dependent speaker
verification, where the proposed approach outperforms the ref-
erence system based on directly averaging of the embeddings
extracted from the enroll data using the network and the appli-
cation of cosine similarity.
Index Terms: Speaker Verification, Enrollment Models, Em-
bedding Dictionary, aDCF Loss

1. Introduction
Speaker Verification (SV) is a binary problem which consists
of determining whether two different utterances belong to the
same identity or different. These two utterances are widely
known as enrollment utterance and test utterance. Mostly, cur-
rent SV systems are trained to multi-class classification to ob-
tain a representation for each of these utterances, which is called
embedding or x-vector [1, 2]. However, this approach does not
take into account the goal of the verification task to train dis-
criminative embeddings. Therefore, after extracting the speaker
embeddings, a back-end is applied to obtain the final verifica-
tion scores. This back-end can be a simple cosine similarity
[3] where the verification scores when each target speaker has
more than one enrollment utterance are obtained by averaging
all the enrollment embeddings, or an approach more sophisti-
cated [4] to improve the discriminative ability which usually in-
volves a more complex training process and high computational
time. To alleviate these drawbacks, this paper presents a novel
and straightforward approach to perform the verification pro-
cess. This approach is based on training enrollment models for
each speaker taking advantage of the information learned in the
network from the training speaker set which allows the system
to be more robust at the test stage. This is possible since the ma-
trix from the last layer in DNN models can be interpreted as an
embedding dictionary where the speaker identities of the train-
ing data are stored. As we will show, it is a more effective way
to make the verification process since each enrollment model is

trained to improve the discrimination ability and therefore, the
system performance.

Ideally SV systems based on DNN should be trained to
carry out directly the verification process, and also, all the pa-
rameters should be trained at the same time. For example, train-
ing an end-to-end system as a binary classification, so the sys-
tem is able to determine between two utterances as a target or a
non-target trial. This kind of systems have been trained success-
fully for text-dependent [5, 6] and text-independent [7] tasks,
but it can be possible thanks to the availability of a large amount
of training data. It also works in cases with strong pre-trained
models as started point, e.g. in [8] where a DNN architecture is
initialized to mimic a pre-trained i-vector and PLDA, and it is
trained using a binary cross-entropy loss function as optimiza-
tion metric . However, many SV systems in the state-of-the-art
have proposed a similar framework which consists of the use
of a model trained for multi-class classification with a Cross-
Entropy (CE) loss function combined with an average pooling
mechanism to produce embeddings. Once the embeddings are
extracted, a back-end technique is employed to perform the ver-
ification process. Cosine similarity [3] and Probabilistic Linear
Discriminant Analysis (PLDA) [9, 10] have been widely em-
ployed.

In pioneer DNN works with this framework, it was sup-
posed, that successful classification models would be able to
achieve great results in different test data. However, the test
data can have different variability from train data, so it may
not be always possible to generalize properly in unseen data.
For that reason, recently, the CE loss function has been sub-
stituted by different variants of classification loss functions
such as Angular loss (A-Softmax) [4] or Additive Angular loss
(Arc-Softmax) [11] to increase the discrimination ability. On
the other hand, different back-end approaches based on met-
ric learning techniques are increasing as a relevant focus of re-
search since these approaches allow to make the training pro-
cess more appropriate to the evaluation procedure such as our
previous work based on triplet neural networks [12, 13] com-
bined with an approximation of the optimization of the AUC
(aAUC) [14], contrastive loss [15], partial AUC loss (pAUC)
[16], NeuralPLDA[17], or a binary DNN back-end [18]. How-
ever, these approaches are very sensitive to the training data
selection to create the pairs or triplets, and this process also in-
volves a slow convergence and a high computational cost.

Previously in [19], we addressed these issues proposing the
aDCF loss function which is another alternative to CE loss func-
tion, and at the same time, it is a more suitable for SV task since
this function is inspired by the Detection Cost Function (DCF)
[20] which is one of the main verification metrics employed.

In this paper, instead of using a complex back-end, we pro-
pose an alternative to the verification process, which consists of
training enrollment models. We can develop this approach eas-
ily thanks to the use of a learnable vector for each enrollment
speaker that will be optimized using the speaker enrollment data
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and the network that has been trained and contains the infor-
mation of the training speakers. Using this approach, we can
consider the information stored in the last layer as competing
speakers, therefore negative examples, and the enrollment data
represent positive examples. This process has to be carried out
for each enrollment speaker to produce a learned vector, which
will be separated in terms of the detection metric from the train-
ing speakers. The process is extremely efficient since there is no
need to select hard negatives, and only some learnable param-
eters are optimized while the rest of the network is frozen. To
train the whole system, we optimize our aDCF loss function,
which is more appropriate for the verification task. Further-
more, this function can be easily used in the new verification
process to train the enrollment models since it is composed of
multiple binary classifiers to produce the one-versus-all classifi-
cation. Therefore, we can reproduce this expression as a binary
classifier for the objective function of the enrollment training.
Preliminary results outperform a cosine similarity metric and
also show an improvement in the system calibration.

The rest of the paper is organized as follows. Section 2
provides a review of our loss function. In Section 3 we present
the description of the new approach to train a enrollment model.
The entire system description is detailed in Section 4, with the
experiment protocol in Section 5. Results and analysis are given
in Section 6. Conclusions are presented in Section 7.

2. aDCF Loss Function
In [19], we developed a loss function to replace the traditional
CE loss, but keeping the philosophy of the multi-class training
as Fig.1a) depicts. Furthermore, this loss function is a differ-
entiable version of the Detection Cost Function (DCF) widely
used in verification. Thus, with this approach, we minimize a
weighted sum of the probability of misses (P̂miss) and the prob-
ability of false alarms (P̂fa) given by the costs that quantify the
trade-offs between both types of errors. For m examples, we
estimate P̂miss by averaging the number of times the scores of
target speakers Ntar are smaller than the decision threshold Ω.
On the other hand, the P̂fa is estimated by the average num-
ber of times the scores of non-targets Nnon are greater than Ω.
Therefore, we define the probability of false alarm and proba-
bility of miss by means of a sigmoid function of the difference
between the score and the threshold to make a differentiable
approximation of the binary counter, which enables the back-
propagation of the gradients as follows,

P̂fa(θ,Ω) =

∑
yi∈ynon

σ(α(sθ(xi, yi)− Ω))

Nnon
, (1)

P̂miss(θ,Ω) =

∑
yi∈ytar

σ(α(Ω− sθ(xi, yi)))
Ntar

, (2)

where σ() is the sigmoid function, α is an adjustable pa-
rameter, and sθ(xi, yi) is the score obtained from the last layer
which is defined as a cosine distance layer as follows,

sθ(xi, yi) =
xi ·WT

yi

‖xi‖ ·
∥∥WT

yi

∥∥ , (3)

where xi is the input sample, yi is the class label, ‖xi‖ is
the normalized input to the last layer, and

∥∥WT
yi

∥∥ is the normal-
ized layer parameters of the speaker class yi. Thus, using these

expressions, we can now propose to minimize the following ap-
proximated loss function defined by,

aDCF (θ,Ω) = γ · P̂fa(θ,Ω) + β · P̂miss(θ,Ω), (4)

where γ and β are tuneable parameters to provide more cost
relevance to one of the terms over the other.
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Figure 1: (a) Left: Training phase, where the last layer can be
seen as an embedding dictionary of the training speakers. (b)
Right: Enrollment phase, where an enrollment model is trained
for each target speaker.

3. Training Enrollment Model
This paper proposes a novel approach to carry out the enroll-
ment process in a SV system taking advantage of the infor-
mation modelled during the training phase with the aDCF loss
function to improve the system performance. Nowadays, some
SV systems employ complex and strong back-end methods to
perform the verification process. Most of them usually require
a careful selection process of the input data which makes these
methods very sensitive to this process.

To address the issue of data selection, we employ the ma-
trix from the last layer of the architecture combined with the
enrollment data to mimic the target/non-target process which is
carried out in the verification task. In Fig.2, we interpret the
matrix obtained from the last layer during the training process
as an embedding dictionary, since each row learns as the train-
ing progresses a representation of the speaker information that
is correctly classified when the embedding is multiplied by the
corresponding row. Therefore, we can see each row weight as
an embedding which represents a different speaker.
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Figure 2: Embedding dictionary from the last layer in the train-
ing phase, where each row represents one of the N train speak-
ers and D is the dimension of the embedding.
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Once this matrix is well-trained in the training stage, we
pass to the second phase, which is the enrollment phase repre-
sented in Fig.1b). In this phase, we add a new learnable vector
w for each enrollment speaker that will also be evaluated sim-
ilarly to (3) as we will see later. To initialize this layer, we
have employed two different alternatives. First, we define ran-
dom values for vector w, while in the other option, we initialize
this vector using an averaging of the enrollment data of each
speaker.

Moreover, during the training of the enrollment model, the
same aDCF loss function that we have employed in the training
phase is optimized. To optimize this function now, the score can
be expressed as,

sθ(xi) =
xi · wT

‖xi‖ · ‖wT ‖
, (5)

where ‖xi‖ is the normalized input to the enrollment model,
and

∥∥wT∥∥ is the normalized layer parameters of the embedding
obtained from the enrollment utterance. Using this expression,
we obtain the scores of the enrollment utterances or targets star
and the scores of the embedding dictionary or non-targets snon,
which are directly used to optimize the aDCF loss. The opti-
mization using this function is possible since it can be seen as a
loss designed to make a one-versus-all multi-class classification
with binary classifiers. Thus, we optimize the cost of classify-
ing the enrollment utterances as the correct enrollment speaker
avoiding the similarity to the stored models from the training
set.

For the test phase, the test data is compared with each en-
rollment model trained during the enrollment phase, and we ob-
tain directly the verification scores without the need of using
another external metric. We also have to note that this proce-
dure does not affect the efficiency or the computation cost at
test time.

4. Supervector Neural Network System
In the following section, we briefly present the architecture of
the system, which is depicted in Fig.1 for the front-end and
pooling parts. The front-end in state-of-the-art SV systems is
usually based on a DNN with a global average reduction mech-
anism to extract embeddings. However, this approach does not
work efficiently for text-dependent tasks [21] since with the av-
eraging the order of phonetic information in the utterance is dis-
missed. To address this problem, in previous works [14, 22, 23],
we introduced an alignment method as a new layer into the
Convolution Neural Network (CNN) architecture employed to
replace the average pooling mechanism. This mechanism al-
lows us to keep and encode the temporal structure of the phrase
and the speaker information in a supervector. The alignment
method employed in this work is a Gaussian Mixture Model
(GMM) combined with a Maximum A Posteriori (MAP) adap-
tation [24].

5. Experimental Setup
5.1. Data

The experiments have been reported on the RSR2015 text-
dependent speaker verification dataset [25]. This dataset com-
prises recordings from 157 males and 143 females. There are
9 sessions for each speaker pronouncing 30 different phrases.
Moreover, this data is divided into three speaker subsets: back-
ground (bkg), development (dev) and evaluation (eval). In this

work, we develop our experiments with Part II which is based
on 30 short control commands which have strong overlap of
lexical content, and we employ the bkg (97 speakers, 47 fe-
male/50 male) for training and dev data for calibration. The
evaluation part is used for enrollment training and trial evalu-
ation. This dataset has three evaluation conditions, but in this
work, we have only evaluated the most challenging which is the
Impostor-Correct case where the non-target speakers pronounce
the same phrase as the target speakers. This condition is also the
most employed in the text-dependent SV.

5.2. Experimental Description

To develop our experiments, we have employed a 20 dimen-
sional Mel-Frequency Cepstral Coefficients (MFCC) stacked
with their first and second derivatives as input to train the align-
ment mechanism and as input to the DNN. Furthermore, a 64
component GMM has been trained per phrase using the bkg
partition. From these models, the alignment information is ex-
tracted to use in the alignment mechanism of our architecture.

In this work, a set of experiments was carried out to show
the behaviour of the new approach proposed. The performance
obtained using the architecture after the training phase to ex-
tract embeddings and applying a cosine similarity (Cosine) is
compared to the results achieved with the training enrollment
models approach (EnrollModel) proposed with two different
alternatives for the layer initialization. The first alternative con-
sists of a totally random initialization (rand), and the other al-
ternative is initialized with an averaging of the enrollment em-
beddings (avg).

6. Results and Analysis
Table 1 presents Equal Error Rate (EER), NIST 2010 minimum
and actual detection cost (minDCF and actDCF ) [26], and
Cost of log-likelihood-ratio values (Cllr and minCllr)[27].

Back-end Fem
Type Init EER min/actDCF minCllr/Cllr

Baseline (Cosine) − 4.19 0.72/0.78 0.159/0.164
Enroll Model rand 3.77 0.74/0.77 0.143/0.147
Enroll Model avg 3.52 0.69/0.72 0.132/0.135

Improvement (%) 15.99 4.17/7.69 16.98/17.68

(a) Female results

Back-end Male
Type Init EER min/actDCF minCllr/Cllr

Baseline (Cosine) − 5.80 0.91/1.02 0.218/0.228
Enroll Model rand 5.42 0.89/0.92 0.204/0.213
Enroll Model avg 5.22 0.86/0.89 0.196/0.228

Improvement % 10.00 5.49/12.75 10.09/6.58

(b) Male results

Back-end Fem+Male
Type Init EER min/actDCF minCllr/Cllr

Baseline (Cosine) − 5.10 0.85/0.93 0.193/0.201
Enroll Model rand 4.72 0.83/0.85 0.180/0.185
Enroll Model avg 4.46 0.79/0.82 0.170/0.174

Improvement (%) 12.55 7.06/11.83 11.92/13.43

(c) Female+Male results

Table 1: Experimental results on RSR2015 Part II [25] eval
set, showing EER%, Cllr, minCllr, actDCF and minDCF. These
results were obtained to compare the approach proposed with
the two alternatives as initialization and the cosine baseline.
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We can observe that the proposed approach for the verifi-
cation process with the two different initializations outperforms
the baseline using a cosine similarity directly over the embed-
dings extracted from the architecture without applying any other
back-end technique. Furthermore, we can see as a good initial-
ization leads the enrollment training to better performance, but
a random initialization also improves the baseline results. This
fact reflects that training specific enrollment models for each
enroll speaker helps to improve the discrimination ability, and
therefore the text-dependent speaker verification process.

Moreover, whether we pay the attention in the difference
between the values of the optimal DCF (minDCF ) and Cllr
(minCllr) with their correspondent actual value, we note that
both alternatives for the training of the enrollment models have
a minor difference between those values than using the cosine.

In addition, Fig. 3 represents the Detection Error Trade-off
(DET) curves. These curves are grouped by gender to show bet-
ter the results for each part of the Table 1. These representations
clearly demonstrate that the training of the enrollment models
with both initializations have a great performance in both sub-
sets (female and male). In Fig.3a), we can see the DET curves
of female results where the three results follow the same trend
than in the other figures. However, note that the minDCF result
in Table 1 for the EnrollModel + rand in this data shows a
slightly lower performance than Cosine result, but in the cor-
respondent DET curve, we observe that the overall performance
including EER point are also better than Cosine baseline.
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Figure 3: (a) DET curves for female results of the three back-
ends. (b) DET curves for male results of the three back-ends.

Finally, we have conducted an analysis of this new approach
where we have made a brief study of the results obtained indi-
vidually for each phrase. In Fig.4, we represent the evolution of
the DCF metric for two different phrases during the training of
the enrollment phase. Note that for each point in the curve the
full trial list is evaluated and DCF computed for the selected
phrase. In this representation, we observe two different be-
haviours which demonstrate that even though the global perfor-
mance is better with the proposed approach, there is still room
for improvement. We can find some phrases that the system
works correctly with while some others do not behave as good
as expected. For example, Fig.4a) shows one of the phrases
which has a great performance and where we can see that the
results with the proposed method improves considerably the fi-
nal DCF result. While in Fig.4b), we observe that the use of the
same training configuration for all the phrases may not be the
best option. In this case, with less iterations we can find a bet-

ter result, but the system does not converge to a better solution
compared to the baseline.
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Figure 4: (a) DCF evolution in one of the phrases from the eval-
uation data which individually has a great performance during
the training of the enrollment model. (b) DCF evolution in one
of the phrases from the evaluation data which has one of the
worst performance during the training of the enrollment model.

7. Conclusions
In this paper, we have presented a novel approach to perform
the verification process. This approach consists of the use of
the embedding dictionary stored during the training phase in
the matrix of the last DNN layer to train an enrollment model
for each speaker. With this system, we mimic the test process
where enrollment utterances are compared with test utterances
to determine whether each pair of utterances is a target or non-
target trial. Even though this is a preliminary study, the proposal
has been able to improve the system performance, although, in
the analysis part, we have checked that some limitations still
exist. The results confirm that this technique is an interesting
line of research, so we plan to work in different alternatives to
initialize the weight vector combined with different Bayesian
estimation approaches.
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