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Abstract
We propose a dynamic-margin softmax loss for the training of
deep speaker embedding neural network. Our proposal is in-
spired by the additive-margin softmax (AM-Softmax) loss re-
ported earlier. In AM-Softmax loss, a constant margin is used
for all training samples. However, the angle between the feature
vector and the ground-truth class center is rarely the same for
all samples. Furthermore, the angle also changes during train-
ing. Thus, it is more reasonable to set a dynamic margin for
each training sample. In this paper, we propose to dynamically
set the margin of each training sample commensurate with the
cosine angle of that sample, hence, the name dynamic-additive-
margin softmax (DAM-Softmax) loss. More specifically, the
smaller the cosine angle is, the larger the margin between the
training sample and the corresponding class in the feature space
should be to promote intra-class compactness. Experimental re-
sults show that the proposed DAM-Softmax loss achieves state-
of-the-art performance on the VoxCeleb dataset by 1.94% in
equal error rate (EER). In addition, our method also outper-
forms AM-Softmax loss when evaluated on the Speakers in the
Wild (SITW) corpus.
Index Terms: speaker verification, large-margin loss, intra-
class compactness

1. Introduction
Automatic speaker verification (ASV) becomes increasingly
popular for biometric authentication due to its convenience and
effectiveness. The aim of an ASV system is to authenticate the
identity of a speaker given his/her utterances. The ASV task en-
compasses both text-dependent and text-independent modes de-
pending whether or not the content of utterances is constrained.
The ASV pipeline consisting of a speaker embedding [1, 2, 3, 4]
front-end followed by a Probabilistic Linear Discriminant Anal-
ysis [5] back-end has been dominant over the past years.

Recently, using deep neural networks (DNNs) to extract
discriminative speaker embeddings has attracted much atten-
tion. Compared to i-vector [1], deep-learning based embed-
dings have shown superior performance on a wide variety of
ASV tasks [2, 3, 4]. In this regard, most previous works
have focused on searching for network architectures that pro-
duce speaker embedding vectors with improved representation
power. In [6], a long-short-term-memory (LSTM) layer was in-
corporated into the x-vector’s time delay neural network [4] to
extract more comprehensive speaker information. In [7], frame-
level features were aggregated into utterance-level embeddings
by incorporating NetVLAD and GhostVLAD layers into the
‘thin-ResNet’ architecture, which achieved better performance
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compared with the standard ResNet [8]. More recently, genera-
tive adversarial networks were also successfully applied to deal
with the problems of short utterances and domain mismatch
[9, 10].

As in most machine learning tasks, a good loss function for
speaker embedding would enlarge inter-class variations while
intra-class variation is reduced. In contrary, the learned em-
beddings from the softmax loss are optimized for inter-class
separation alone without taking into account intra-class com-
pactness. A number of novel loss functions were proposed to
address this issue, for example, triplet loss and some variants
of softmax loss. Triplet loss [11, 12] optimizes the embedding
space by minimizing the distance between the feature pairs from
the same speaker at the same time it also minimizes the distance
between the feature pairs from different speakers. The down-
side is that triplet pairs mining is by itself a difficult problem.
As a variant of softmax loss, angular softmax loss [13] has been
shown to perform well on the ASV task [14]. More recently,
the cosine margin was introduced in [15], which performs bet-
ter than other loss functions [16, 17, 18].

In [15], the cosine margin is manually tuned and applied
to all training samples. This is suboptimal since the angle be-
tween the feature vector and the center of the ground-truth class
is hardly the same for each individual sample. Furthermore, the
angle also changes during training. Thus, it is more reasonable
to set a dynamic margin for each training sample. In this paper,
we propose a dynamic cosine margin softmax. In the proposed
method, the margin of a training sample is negatively corre-
lated with the cosine angle of that sample. More specifically,
the smaller the cosine angle is, the larger the margin between
the training sample and the corresponding class in the feature
space, whcih encourages better intra-class compactness. Exper-
iments on the VoxCeleb and SITW datasets [3, 8, 19] indicate
the efficacy of the proposed DAM-Softmax loss, the relative er-
ror reduction is between 4.9%-8.1% for these datasets compared
with AM-Softmax loss.

The rest of this paper is organized as follows. Section 2
reviews the conventional softmax loss, angular softmax loss and
its variant. Section 3 introduces the proposed dynamic cosine
angular loss. Experimental setup and results are presented in
Section 4. Section 5 concludes the paper.

2. From softmax to angular softmax
2.1. Softmax loss

We start with the definition of the softmax loss in its basic form:

LS = − 1

N

N∑
i=1

log
e
WT

yi
xi+byi∑C

j=1 e
WT

j xi+bj
(1)
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Figure 1: The cosine angle cos(θ) of the training samples at
three different training stages plotted as distribution.

where N is the number of training samples, C is the number of
classes, xi denotes the feature representation of the i-th sample,
and yi indicates the target class of this i-th sample. The quantity
Wj denotes the weight vector of class j while bj is the corre-
sponding bias term. Using the basic rules of trigonometry, the
expression WT

yixi+byi in the numerator on the right-hand-side
of Eq. (1) can be rewritten as

‖Wyi‖ ‖xi‖ cos(θyi) + byi (2)

in terms of the angle θyi between the two vectors Wyi and xi.

2.2. Angular softmax loss

From Eq. (2), we normalize the weight vector to have the
unit norm and discard the bias term by setting ‖Wyi‖ = 1
and byi = 0. This leads to the so-called angular softmax (A-
Softmax) loss [13] defined as follows:

LA = − 1

N

N∑
i=1

log
e‖xi‖φ(θyi )

e‖xi‖φ(θyi ) +
C∑

j=1;j 6=yi
e‖xi‖cos(θj)

(3)

To arrive at the above equation, the cosine angle is also replaced
with a more elaborate function:

φ(θ) = (−1)kcos(mθ)− 2k (4)

where k ∈ [0,m−1] and θ ∈ [ kπ
m
, (k+1)π

m
]. The parameterm is

a positive integer that controls the size of the angular margin in
Eq. (3), thereby enforcing intra-class compactness. In [20], the
authors showed that the A-Softmax loss is better at producing
a more discriminative speaker embedding than the plain vanilla
softmax loss.

2.3. Additive-margin softmax loss

The additive-margin softmax (AM-softmax) loss was further
extended in [15] at two fronts. Firstly, the angular margin is im-
posed with an additive term m instead of a multiplicative term:

φ(θyi) = cos(θyi)−m (5)

Secondly, the norm of the feature vectors ‖xi‖ was replaced
with a hyper-parameter s, while xi is normalized to the unit
norm. The formula of the AM-softmax loss is given by:

LAM = − 1

N

N∑
i=1

log
es·φ(θyi )

es·φ(θyi ) +
C∑

j=1;j 6=yi
es·cos(θj)

(6)
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Figure 2: Illustration of the feature vector and the weight vector
under various loss functions. In (a) and (b), X1 and X2 are the
feature vectors of two training samples under the conventional
softmax loss while X′1 and X′2 are the feature vectors under the
AM-Softmax loss, from which we observe that different samples
share a constant margin m. In (c) and (d), X3 and X4 are the
feature vectors of two training samples under the conventional
softmax loss while X′3 and X′4 are the feature vectors under the
DAM-Softmax loss, where the margin of each sample depends
on cos(θ).

The cosine margin m is a manually tuned and is usually larger
than 0.

3. Dynamic-additive-margin softmax loss
As it is used in AM-Softmax loss, the cosine margin is a con-
stant shared by all training samples. It is worth noting that the
cosine angle cos(θ) of different training samples is hardly the
same and it changes in the training process, as shown in Fig-
ure 1. We propose a dynamic-additive-margin softmax (DAM-
Softmax) loss based on the above observation. Our method is
based on the assumption that the smaller the cos(θ) is, the far-
ther the sample is from the corresponding class in the feature
space, therefore a larger margin should be set to enforce intra-

Figure 3: Corresponding relationship between the margin and
the cos(θ).
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Figure 4: The architecture of the ResCNN network. The symbol ‘⊕’ represents the element-wise sum. Batch-norm and ReLU activation
function are used after each convolutional layer which are omitted for the sake of simplicity. The “Conv‘n’” and “Res‘n’” labels
denote the convolutional layer and the residual module, respectively. The number of slices of the residual module indicates its depth
(i.e., the number of residual blocks). For example, ‘Res1’ consists of 3 residual blocks. The structure of a residual block is shown in
Figure 5.

class compactness. Figure 2 shows the comparison between the
AM-Softmax loss and our proposed DAM-Softmax loss. The
dynamic margin in the proposed DAM-Softmax loss is defined
as:

φ(θyi) = cos(θyi)−mi (7)

mi =
me(1−cos(θyi ))

λ
(8)

wheremi is the cosine margin of the i-th sample,m is the basic
margin value, and λ is the control factor that controls margin
range. Hence, the DAM-Softmax loss function is formulated
as:

LDAM = − 1

N

N∑
i=1

log
es·(cos(θyi )−mi)

Z
(9)

Z = es·(cos(θyi )−mi) +

C∑
j=1;j 6=yi

es·cos(θj) (10)

Figure 1 shows that the cosine angle cos(θ) is relatively
small in the initial stage of training and it increases as more
epochs are performed. The margin decreases as the cos(θ) in-
creases, in order to accelerate the margin reduction speed and
thus make the training model converge faster, we choose the
exponential function as cos(θ) to margin conversion method in
Eq. (8). Figure 3 illustrates the corresponding relationship be-
tween the margin and the cos(θ) when m and λ are set to 0.2
and 2 respectively, and the dotted lines indicate the slope of the
curve (i.e., the margin reduction speed).

4. Experiments
4.1. Experimental setup

4.1.1. Datasets

We conduct network training on the development set of Vox-
Celeb1 (1211 speakers) [3] and VoxCeleb2 (5994 speakers) [8]
without any data augmentation, respectively. VoxCeleb1 con-
tains over 100,000 utterances from 1,251 speakers while Vox-
Celeb2 contains over 1 million utterances from 6,112 speak-
ers. ASV systems are evaluated on the VoxCeleb1 test set,

Conv Conv

+

Conv

Figure 5: The structure of a residual block. Here, ‘Conv’ repre-
sents the convolutional layer.

the extended and hard test sets (VoxCeleb1-E and VoxCeleb1-
H, respectively). Notably, the VoxCeleb1 test set consists of
37,720 pairs from 40 speakers, VoxCeleb1-E contains 581,480
pairs from the whole VoxCeleb1 dataset (1251 speakers) and
VoxCeleb1-H contains 552,536 pairs that are sampled from
speakers with the same gender and nationality. In addition to
being evaluated on the VoxCeleb dataset, the systems are fur-
ther evaluated on the Core condition of the SITW dataset [19]
to investigate the performance of our proposed DAM-Softmax
loss more comprehensively.

4.1.2. Networks

The residual CNN introduces residual block into the CNN net-
work and has achieved great success in extracting speaker fea-
tures [21, 22, 23]. Our ResCNN architecture, as shown in Fig-
ure 4, accepts 1× 161 ×T spectrogram as its input, in which T
denotes the number of frames in the spectrogram. We adopt 4
residual modules with the depths of 3, 4, 6 and 3 respectively,
while a 5 × 5 filter size, 2 ×2 stride convolutional layer is ap-
plied to link the residual modules with different channels (i.e.,
Conv2, Conv3 and Conv4 in Figure 4). Figure 5 shows the struc-
ture of a residual block, which contains two convolutional lay-
ers with 3 × 3 filters and 1 × 1 stride. During training, we
randomly sample 3-second utterances from each audio file to
generate spectrogram through a hamming window of width 20
ms and step 10 ms, while the full length utterances are used dur-
ing testing. The AvgPool layer is implemented with 2d adaptive
average pooling layer, which ensures that the size of the output
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Table 1: Speaker verification performance on the VoxCeleb1 test set, the extended and hard test sets (VoxCeleb1-E and VoxCeleb1-H,
repsectively), and the evaluation set of SITW Core.

Front-end model Loss Dims Training set EER(%)

VoxCeleb1 test set
Nagrani et al. [3] i-vector+PLDA - - VoxCeleb1 8.80
Nagrani et al. [3] VGG-M Softmax 1024 VoxCeleb1 10.20
Cai et al. [21] ResNet-34 A-Softmax + PLDA 128 VoxCeleb1 4.46
Our implementation ResCNN AM-Softmax 1024 VoxCeleb1 4.65
Proposed ResCNN DAM-Softmax 1024 VoxCeleb1 4.38
Chung et al. [8] ResNet-34 Softmax + Contrastive 512 VoxCeleb2 5.04
Chung et al. [8] ResNet-50 Softmax + Contrastive 512 VoxCeleb2 4.19
Xie et al. [7] Thin ResNet-34 Softmax 512 VoxCeleb2 3.22
Our implementation ResCNN AM-Softmax 1024 VoxCeleb2 2.08
Proposed ResCNN DAM-Softmax 1024 VoxCeleb2 1.94
VoxCeleb1-E
Chung et al. [8] ResNet-50 Softmax + Contrastive 512 VoxCeleb2 4.42
Xie et al. [7] Thin ResNet-34 Softmax 512 VoxCeleb2 3.24
Our implementation ResCNN AM-Softmax 1024 VoxCeleb2 2.28
Proposed ResCNN DAM-Softmax 1024 VoxCeleb2 2.14
VoxCeleb1-H
Chung et al. [8] ResNet-50 Softmax + Contrastive 512 VoxCeleb2 7.33
Xie et al. [7] Thin ResNet-34 Softmax 512 VoxCeleb2 5.17
Our implementation ResCNN AM-Softmax 1024 VoxCeleb2 3.89
Proposed ResCNN DAM-Softmax 1024 VoxCeleb2 3.70
SITW Core
Our implementation ResCNN AM-Softmax 1024 VoxCeleb2 3.96
Proposed ResCNN DAM-Softmax 1024 VoxCeleb2 3.64

embedding is the same when test utterances of different lengths
are input into the network. The fully connected layer FC is em-
ployed to yield the 1024-dimensional speaker embedding, and
N represents the number of speakers in the training set.

4.1.3. Other Details

The SGD optimizer with an initial learning rate of 0.1 is em-
ployed to optimize the training model. Mini-batch size is 64.
We set m = 0.2 and s = 30 both for the AM-Softmax loss
and DAM-Softmax loss, while the control factor is set to 2. The
cosine similarity is used as the back-end scoring method.

4.2. Experimental results

Experimental results are shown in Table 1, where VoxCeleb1
and VoxCeleb2 refer to their development set, respectively. The
proposed DAM-Softmax loss outperforms the AM-Softmax
loss in both cases when the training set is VoxCeleb1 or Vox-
Celeb2 due to the effectiveness of the dynamic margin. More
specially, DAM-Softmax loss achieves a 5.8% relative reduc-
tion in EER compared with AM-Softmax loss when trained
on the VoxCeleb1 and evaluated on the VoxCeleb1 test set,
and when the training set is VoxCeleb2, DAM-Softmax loss
achieves 6.7%, 6.1%, 4.9% and 8.1% relative reduction in EER
compared with AM-Softmax loss when evaluated on the Vox-
Celeb1 test set, VoxCeleb1-E, VoxCeleb1-H and SITW Core
respectively. The results reinforce the idea that dynamically set-
ting the margin for each training sample commensurate with the
cosine angle of that sample is more reasonable than using a con-
stant margin shared by all training samples.

In addition, we observe that the performance of our pro-
posed DAM-Softmax loss shows a significant improvement
compared with the current state-of-the-art trained on the Vox-
Celeb2 and evaluated on the VoxCeleb1 test set, VoxCeleb1-E
and VoxCeleb1-H (1.94%, 2.14%, and 3.70% in EER, respec-
tively). To the best of our knowledge, our results compare fa-
vorably to those reported earlier using the same training and test
set.

5. Conclusions

In this paper, we proposed a DAM-Softmax loss as an extension
to the AM-Softmax loss. In the proposed DAM-Softmax loss,
the margin of each training sample dynamically changes during
training. This is different from the AM-Softmax loss which uses
a constant margin for all training samples. We validated the per-
formance of our method with the ResCNN architecture on the
VoxCeleb and SITW datasets. Experimental results show that
our proposed DAM-Softmax loss achieves better performance
than AM-Softmax loss. Moreover, our results compare favor-
ably to the current state-of-the-art results on the same training
and test data.
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