
CSL-EMG Array: An Open Access Corpus for EMG-to-Speech Conversion

Lorenz Diener, Mehrdad Roustay Vishkasougheh, Tanja Schultz

Cognitive Systems Lab, University of Bremen
lorenz.diener@uni-bremen.de

Abstract
We present a new open access corpus for the training and eval-
uation of EMG-to-Speech conversion systems based on array
electromyographic recordings. The corpus is recorded with a
recording paradigm closely mirroring realistic EMG-to-Speech
usage scenarios, and includes evaluation data recorded from
both audible as well as silent speech. The corpus consists of 9.5
hours of data, split into 12 sessions recorded from 8 speakers.
Based on this corpus, we present initial benchmark results with
a realistic online EMG-to-Speech conversion use case, both for
the audible and silent speech subsets. We also present a method
for drastically improving EMG-to-Speech system stability and
performance in the presence of time-related artifacts.
Index Terms: EMG, Synthesis, EMG-to-Speech, Silent Speech
Interfaces

1. Introduction
Speech is the most important form of communication. It is
efficient and natural and lets us easily communicate with each
other. With recent advances in human-computer interaction,
it also allows us to interact with increasingly complex speech-
based user interfaces. However, speech interfaces are not without
conceptual issues, since they typically rely on an audible acoustic
speech signal. Sometimes, audible speech is simply not an option
either due to situational circumstances (e. g. in situations where
bystanders would be disturbed or where confidential information
needs to be communicated while other people are listening in),
or due to the user not being able to produce a clean audible
speech signal (e. g. in the case of medical issues impairing speech
production, such as laryngectomy). Additionally, when this
signal is distorted (e. g. in a large crowd or on a factory floor),
performance degrades. A possible approach to address these
problems is to build interfaces using speech-related biosignals
other than acoustics recorded with a microphone [1].

In recent years, research interest in such silent speech inter-
faces (SSIs) – speech interfaces that continue to function even
when an audible acoustic signal is not present [2] – has grown
substantially within the speech and general signal processing
communities. There is an increasing number of works using
signals from ultrasound [3, 4, 5], permanent-magnetic articu-
lography [6, 7], microwave radar [8], surface electromyography
(sEMG, with muscle movement [9] or sub-vocal [10]), non-
audible murmur recorded with a throat microphone [11] or even
electrocorticography [12].

EMG-to-Speech conversion is one type of SSI: It refers to
the direct conversion of facial electrophysiological muscle activ-
ity, measured using surface electromyography, to audible speech.
Such a direct conversion approach is well suited to speech pros-
thesis and silent telephony applications and could be used as
a pre-processing step to regular acoustic speech interfaces. To
enable conversational use, direct EMG-to-Speech conversion
must work in real-time and with low latency. Additionally, it
should work on silently recorded signals – i. e. with a user simply

mouthing words. Due to data availability, however, EMG-to-
Speech systems are mainly evaluated on EMG measured during
audible speech – performance on truly silent speech signals is
generally not addressed. Finally, an online EMG-to-Speech sys-
tem – one where output is produced directly as a user speaks –
should not require large amounts of time and data for user or
session enrolment. Due to signal differences between sessions
and speaking modes, these challenges are substantial. Moreover,
to the best of our knowledge, there is no publicly available data
corpus for EMG-to-Speech conversion research which can be
used to investigate solutions to all of these issues.

Available corpora [13, 14], such as the EMG-UKA corpus,
were designed with speech recognition in mind, and are therefore
not well-suited for training and evaluating EMG-to-Speech con-
version systems, especially not in an online context. Firstly, for
training EMG-to-Speech conversion systems, sessions with large
amounts of utterances are preferable (the EMG-UKA corpus
contains only two large sessions, with most sessions containing
50 utterances). Secondly, array electrodes are a vastly more
practical alternative to single-electrode setups, cutting the exper-
tise and setup time required to use a system – and unlike with a
system using a low number of electrodes, electrode attachment
problems can potentially be compensated for. There is currently
no publicly available array EMG speech corpus. Finally, exist-
ing corpora were recorded with training and testing utterances
presented in a fully randomized order. While this is acceptable
for testing offline EMG-to-Speech conversion, it is unsuitable
for online scenarios. Here, the testing necessarily follows after
the training because training data needs to be available before
a system can be trained. To get realistic estimates of the per-
formance of an online EMG-to-Speech conversion system, it is
necessary to record test data after training data, which allows us
to account for time-correlated changes in the signal – which an
online system will have to compensate for. In addition to col-
lecting such test data, within-session adaptation data to evaluate
strategies for such compensation would also be useful.

2. CSL-EMG Array corpus overview
In this work, we present a corpus of parallel EMG and audio data
which can be used to build and evaluate EMG-to-Speech conver-
sion systems in a realistic usage scenario, with speech recorded in
two speaking modes – audibly and silently (i. e. merely mouthing
words without producing audible acoustic speech) produced.

2.1. Design

The CSL-EMG Array corpus consists of sessions recorded in a
block-wise manner, with a total of 7 blocks recorded in a fixed
sequence in numerical order (i. e. first block 1, then block 2,
then block 3, etc.) and utterances within a block presented in
randomized order (as opposed to previous corpora recording all
utterances in a randomized manner with no time structure, as
one single block). This closely mirrors the real online EMG-
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Table 1: Amount of utterances for different recording blocks
(amounts in parentheses include additional sentences only
present for silent testing mode sessions).

Subset train dev eval

(Block0 Align) - (50) (40)
Block1 Initial 250 50 40
Block2 Adapt1 20 20 20
Block3 Eval1 - 30 20
Block4 Adapt2 20 - -
Block5 Eval2 - 30 20
Block6 Adapt3 20 - -
Block7 Eval3 - 30 20

Total 310 160 (210) 120 (160)

to-Speech conversion scenario and therefore (unlike corpora
where training and testing data do not have any temporal struc-
ture) allows for the development and testing of online EMG-
to-Speech conversion systems with realistic estimates of online
performance. The utterances are English sentences from the
broadcast news domain, and are split into training, development
and evaluation subsets.

Block 1 includes recordings of the entire set of sentences
available in the corpus (the full training, development and evalu-
ation sets). It can be used to train and optimize EMG-to-Speech
systems and to create a baseline for evaluation in a manner that
is comparable to offline EMG-to-Speech conversion.

Block 2, 4 and 6 each contain 20 training sentences (identical
in each case). Block 2 additionally contains 20 utterances each
for development and evaluation. These can be used to implement
strategies for session enrolment and within-session adaptation.

Finally, Block 3, 5 and 7 contain 30 development and 20
evaluation utterances to evaluate these strategies on data not
recorded concurrently with the data that the system is being
trained on. This matches the evaluation scenario of a real online
EMG-to-Speech conversion system, where compensation for
time-related artifacts such as electrode detachment or impedance
drift is required. Table 1 presents an overview of the utterance
counts in each block and subset.

There are two types of sessions in the corpus: Audible-
testing-mode sessions, and silent-testing-mode sessions. For
the audible-testing-mode sessions, subjects were prompted to
simply read out the utterances as they normally would, and
parallel EMG- and Audio signals are included for each utterance.
For silent-testing-mode sessions, subjects were asked to silently
mouth all sentences that are part of the development or evaluation
subset in blocks 1 through 7 (i. e. mouthing without producing
sound while reading along) – for these, only an EMG signal is
included, as a reference audio signal is not produced. Note that
this means that for these sessions, it is not possible to directly
compare the systems output with a reference signal since an
acoustic signal does not exist when people speak silently.

The lack of audible acoustic reference data in silent-testing-
mode sessions is a problem when trying to evaluate EMG-to-
Speech systems built for this mode: Common measures such as
the mel-cepstral distortion score rely on such a reference signal
and cannot be computed when it is not available. To still allow
for objective evaluation, silent sessions include an additional
block 0 that contains an audible recording of the development
and evaluation utterances (both EMG and Audio). This data
can be used to evaluate EMG-to-Speech conversion output using
dynamic time warping (DTW) alignment or similar techniques.

Figure 1: EMG array electrode positions and numbering for
the recordings in the CSL-EMG Array corpus. Derivation is
chained-differential, i. e. channel 1 is between electrode 1 and 2,
channel 2 is between electrode 2 and 3, etc.

In addition to the EMG- and audio data, metadata about the
recordings (including transcripts) are also included.

2.2. Recording setup and data formats

Recordings were performed in a recording chamber shielded
against acoustic and electromagnetic interference. The audio
signals included in the corpus were recorded using a RØDE
NT-1 condenser microphone and a Behringer Xenyx 302 audio
interface. The EMG signals were recorded using an OT Bioelet-
tronica Quattrocento EMG amplifier. Two array electrodes were
used: One 4x8 electrode array on the left cheek, and one 8
electrode strip below the chin. The electrodes were used in a
chained differential derivation configuration (see Figure 1 for
positioning). Cross-row channels were not excluded and instead
provided as-is. Finally, one channel was added to both the EMG-
and audio signal, containing a marker that is pulled high by the
EMG amplifier at the start of each utterance, allowing for easy
synchronization of the EMG and audio signals by alignment of
the markers. Audio data was sampled at 16000 Hz. The EMG
signal was sampled at 2048 Hz with a 0.3 Hz DC offset removal
and a 500 Hz anti-aliasing filter applied, and re-scaled to milli-
volt range (i. e. an EMG signal value of 1 for a channel means
1 mV of measured voltage difference).

The audio and EMG data is provided as one file per utter-
ance, with files for each block in a separate folder and utterance
files in separate sub-folders inside the block folder. Acoustic
and EMG signal data are provided in the numpy version 3 for-
mat [15]. Additionally, for convenience, the acoustic data is
also provided as 16-bit unsigned PCM wav files. The metadata
is provided in a text-based json format, with one json file per
block containing information about the block itself (sampling
rate and filter parameters, ids of training, development and eval-
uation sets, order of recording) as well as about each utterance
(utterance text and recording timestamp as unix epoch).

2.3. Recorded speakers and sessions

The corpus contains twelve sessions from a total of eight speak-
ers. Four speakers (speakers 2, 4, 5 and 7) recorded audible
sessions only, the other 4 (speakers 1, 3, 6 and 8) recorded both
an audible and a silent session. The recorded speakers read
English sentences but, as they were recruited from the general
student population at a German university, are not native English
speakers. They were allowed to re-attempt recording as often
as desired if they felt they needed to correct their pronunciation.
Three of the speakers were female, and five speakers were male.
Speakers ages ranged between 19 and 32 years old. A detailed
breakdown of the sessions can be found in Table 2. In total,
9.5 hours of data are available. Informed written consent of all
recorded speakers was acquired prior to the collection of data.

3746



Figure 2: Baseline MCD scores (lower is better) for real-time session-dependent EMG-to-Speech conversion with EMG normalization,
training on Block 1 and evaluating on Blocks 1, 3, 5 and 7.

Table 2: Session durations broken down by training, development
and testing set as well as speaker gender and session mode.

Total (mm:ss) Mean (mm:ss)

Session mode m/f train dev eval train dev eval

Spk1 aud m 25:21 12:06 10:33 4.9 4.5 5.3
Spk1-Sil sil m 21:33 13:17 11:46 4.2 3.8 4.4
Spk2 aud f 26:14 11:50 10:09 5.1 4.4 5.1
Spk3 aud f 24:33 11:16 10:16 4.8 4.2 5.1
Spk3-Sil sil f 23:20 15:33 13:42 4.5 4.4 5.1
Spk4 aud m 31:31 14:04 12:26 6.1 5.3 6.2
Spk5 aud m 20:53 9:29 8:14 4.0 3.6 4.1
Spk6 aud m 28:42 13:09 11:30 5.6 4.9 5.8
Spk6-Sil sil m 28:40 16:25 14:21 5.5 4.7 5.4
Spk7 aud f 25:13 11:37 10:22 4.9 4.4 5.2
Spk8 aud m 20:50 10:02 8:30 4.0 3.8 4.2
Spk8-Sil sil m 20:44 12:51 10:59 4.0 3.7 4.1

All 297:35 151:38 132:49 4.8 4.3 5.0

3. Initial EMG-to-Speech evaluation
To provide a baseline for future results and to further illus-
trate the usefulness of the novel recording protocol of the CSL-
EMG Array corpus, we present initial EMG-to-Speech conver-
sion results on this corpus. Here, we provide initial results using
the mel-cepstral distortion (MCD) score, a distance measure for
comparing system output to a reference audio file [16].

3.1. Real-time C-TD15 EMG features

The original TD-15 feature set [17] has proven to be resilient
and effective for EMG-to-Speech conversion. It is, however, of
limited use when building a system that needs to output data with
very low latency to enable natural spoken communication. In
particular, it requires both explicit future context through stack-
ing (150 ms into the future) as well as implicitly (to calculate a 9
point double average, which also limits its usefulness when using
sample rates other than 600 Hz). For this reason, we introduce a
new feature set: The causal TD15 (C-TD15) features, which can
be calculated with low latency and no explicit future context.

Table 3: Baseline MCD scores (lower is better) for an EMG-to-
Speech conversion system without within-session normalization,
audible testing mode sessions only.

Block (Dev. set) Block (Eval. set)

Session 1 3 5 7 1 3 5 7

Spk1 7.54 7.78 8.54 8.95 7.84 7.94 8.49 8.83
Spk2 7.55 9.98 8.22 8.46 8.12 9.57 8.21 8.41
Spk3 7.5 17.14 14.71 9.06 7.87 17.33 14.4 9.07
Spk4 8.66 9.82 9.39 9.4 8.71 9.75 9.51 9.48
Spk5 7.49 7.95 7.69 7.65 7.46 7.93 7.64 7.56
Spk6 7.41 7.96 7.94 7.88 7.64 8.01 8.0 8.08
Spk7 7.46 8.23 8.58 8.63 8.08 8.48 8.63 8.8
Spk8 7.83 8.18 8.01 8.31 7.96 8.27 8.25 8.33

To calculate C-TD15 features for a single channel, the signal
is first split into a high-frequency-band and low-frequency-band
part using a third-order Butterworth high- and low-pass filters
with a cutoff frequency of 134 Hz (resulting in a delay of approx.
12 samples). The high- and lowband signals are then each pro-
cessed into frames with a Blackman window of 32 ms length and
10 ms shift. From the resulting frames, the lower-band power,
lower-band mean, higher-band power, higher-band zero-crossing
rate and higher-band absolute-value mean are calculated, result-
ing in one C-TD1 frame. The C-TD1 frame is stacked together
with the 14 preceding C-TD1 frames to obtain the final C-TD15
feature vector for that channel. To calculate the C-TD15 features
for a multi-channel EMG signal, the C-TD15 features for each
channel are calculated separately and then concatenated to obtain
the combined multi-channel EMG feature vector.

3.2. Target acoustic speech features for audio files

Our system uses Mel-Frequency Cepstral Coefficients (MFCCs)
together with the non-continuous Fundamental Frequency (Fo)
to represent the target acoustic signal as audio file. The acoustic
signal was first windowed with the same parameters as the EMG
signal. MFCCs were then extracted for each window as the filter
parameters of a Mel-Log Spectrum Approximation filter [18],
allowing for efficient re-synthesis. Fo was extracted using the
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Figure 3: Baseline MCD scores (lower is better) for real-time session-dependent EMG-to-Speech conversion, training on Block 1 and
evaluating on silent data from Blocks 1, 3, 5 and 7.

Yin algorithm [19]. Before calculating acoustic features, we
normalize the audio waveform to be between -0.99 and 0.99 to
ensure a consistent signal amplitude range between utterances.

3.3. EMG-to-Speech conversion

To train a basic EMG-to-Speech conversion system for one ses-
sion, we first align the EMG- and acoustic signals of all training
utterances from Block 1 of that session using the marker chan-
nel. We then extract parallel EMG C-TD15 and acoustic MFCC
and Fo features. Using these features, we trained two neural
networks: One to predict MFCC features and one to predict Fo

trajectories, both from C-TD15 input. We used a bottleneck
network structure that has proven to work well for this task [20]
and amount of data, with hidden layer sizes of 2048, 512 and
1024, with dropout regularization after each layer. We trained the
networks for 500 epochs using stochastic gradient descent with a
learning rate of 0.01 and a minibatch size of 1024 (training times
for these systems, on an Nvidia RTX2080Ti GPU, ranged be-
tween 20 and 25 minutes). No further tuning of model structure
and hyper-parameters was performed for this evaluation.

For evaluation, we converted the EMG features of the devel-
opment and evaluation data of blocks 1, 3, 5 and 7 of the same
session to acoustic speech features using the trained networks
and compare the resulting MFCCs to reference MFCCs, aligned
using the marker. Results of this evaluation are summarized
in Table 3. The systems operate as expected on the training
block (block 1). However, performance gets worse or breaks
down entirely for the online scenario (i. e. on those evaluation
data which are recorded after training data, as evaluated using
blocks 3, 5 and 7). This degradation is likely due to changing
conditions over time, e. g. electrode gel drying out or speaker
fatigue. Note that, while generating Fo from EMG is possible
we do not consider Fo evaluation, as the results presented in this
paper are merely given as a baseline for future work.

3.4. Real-Time EMG normalization

We next present an initial method for addressing these differ-
ences, enabling EMG-to-Speech conversion in a realistic real-
time online scenario. We achieve this by performing running
normalization of the EMG signal. We keep track of the 99th

percentiles of the absolute value of EMG channels over 250 ms
and normalize all samples using this 99th percentile value unless
this would result in an amplification greater than 100. This keeps
the signal in a range of -1 to 1, compensating for drift and short
artifacts while not amplifying noise from detached electrodes.
The results of applying the normalization are shown in Figure 2.
Compared to the baseline (not shown), MCD scores for the eval-
uation blocks have improved and the normalized system is able
to produce output for all blocks, enhancing practical usability.

3.5. Evaluation on silent data

Last but not least, we evaluate our systems on silently recorded
speech data. The training procedure is as described in the previ-
ous sections. However, since there is no parallel reference audio
data, evaluation is performed by first aligning the system output
MFCCs with audible reference MFCCs from block 0 using the
DTW algorithm. We then calculate the MCD score between
output and aligned MFCCs as before, resulting in a DTW-MCD
measure. Baseline results for this evaluation mode are plotted
in Figure 3. Note that, due to the alignment, direct comparison
of these scores to non-DTW MCD scores is not possible, and
the DTW alignment is expected to reduce differences between
systems – however, it can be seen that the silent sessions follow
the same general trends described in the previous sections.

4. Summary and outlook
We have presented the CSL-EMG Array corpus for EMG-to-
Speech conversion. This corpus uses a state-of-the-art EMG
electrode array setup. Due to the corpus design, it allows the
easy and comparable training and testing of EMG-to-Speech
systems for many paradigms, including offline and online sys-
tems, session adaptive systems and systems operating on silently
produced speech. The corpus is openly available for research
purposes1. In the future, we plan to evaluate different approaches
to adaptation using this corpus, with the goal of improving per-
formance in an online evaluation context as well as in direct
EMG-to-Speech conversion of silent speech.

1https://www.uni-bremen.de/en/csl/
research/silent-speech-communication/
csl-emg-array-corpus
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