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Abstract
In this work we present an algorithm for synthesising

pseudo rtMRI data of the vocal tract. rtMRI data on the mid-
sagittal plane were used to synthesise target consonant-vowel
(CV) using only a silence frame of the target speaker. For this
purpose, several single speaker models were created. The in-
put of the algorithm is a silence frame of both train and target
speaker and the rtMRI data of the target CV. An image trans-
formation is computed from each CV frame to the next one,
creating a set of transformations that describe the dynamics of
the CV production. Another image transformation is computed
from the silence frame of train speaker to the silence frame of
the target speaker and is used to adapt the set of transformations
computed previously to the target speaker. The adapted set of
transformations is applied to the silence of the target speaker to
synthesise his/her CV pseudo rtMRI data. Synthesised images
from multiple single speaker models are frame aligned and then
averaged to create the final version of synthesised images. Syn-
thesised images are compared with the original ones using im-
age cross-correlation. Results show good agreement between
the synthesised and the original images.
Index Terms: speech resources enrichment, pseudo rtMRI syn-
thesis, image transformation, rtMRI data, vocal tract

1. Introduction
Regardless of the growth in real-time magnetic resonance imag-
ing (MRI) techniques, research in speech production and mod-
eling of the vocal tract faces limitations in building a complete
articulatory synthesis model [1]. Articulatory data acquired
using rtMRI techniques eased the in-depth analysis of human
physiology and the movement of articulators during speech pro-
duction. Such research activity made it possible to fill in the gap
between speech production and its relationship to its linguistic
aspects [2] like a better understanding of the existence of voiced
fricatives.

Acquisition of articulatory data raises several issues such
as the capability to extract precise in time and space speech
dynamics, interpretation of acquired articulatory data, easiness
and safety standards for the subjects. As the usage of MRI tech-
niques provided detailed natural images of articulators without
any known health hazard to the subject, they represent valu-
able techniques against others such as X-ray [3], electromag-
netic articulography [4, 5], electropalatography [6] and ultra-
sound [7, 8].

Usually, in the current acquisition protocol 3D MRI images,
the vocal tract position needs to be held motionless over the ac-
quisition time. This way detailed images of the vocal tract can
be recorded. However, those images correspond to frozen vocal
tract configurations due to a long acquisition time (more than
seven seconds). On the other hand, vocal tract images recorded
with rt-MRI yield natural and complex information about artic-
ulatory spatiotemporal movements. The rtMRI protocol selects
only one slice usually the midsagittal plane and captures tissues
within the midsagittal slice at 50 Hz approximately in real time
[9]. The major benefit of capturing rtMRI images is that it pro-
vides a considerable amount of data which suffices to analyze
continuous rapid speech articulator movements [10, 11, 12].

The recent development in rtMRI imagining techniques
provide tools to examine phonetic and phonological phenom-
ena. There is a vast range of work but we can mention, for in-
stance, vowel nasalization in Portuguese and French [13], coar-
ticulation in VCV sequences [14], characterization of click con-
sonants in African languages [15] ... Besides investigation in
phonetics, rtMRI can have a big impact on automatic speech
and speaker recognition to supplement the acoustic signal with
the structure of the physical system and consequently increase
the performance of recognition systems [12].

As discussed earlier, rtMRI acquisition of vocal tract data
is a long process in terms of finding appropriate and available
equipment, designing a recording protocol, selecting subjects,
recording data and annotating the dynamics of speech articula-
tors in films. Furthermore, the acquisition of articulatory data
presents constraints in acquiring ”global” information like 3D
dynamic rtMRI with high spatiotemporal resolution to capture
vocal fold activity. Even though there are some attempts trying
to address these issues [16, 17], it could be still interesting to be
able to artificially synthesize articulatory data that could enlarge
existing databases and make speech production studies easier.

In this work, we use a method [18, 19] that captures the
dynamics of speech during CV production by using non-rigid
image transformations. This information is adapted and then
applied to a target speaker in order to synthesise its CV produc-
tion data using only his silence frame. We evaluated the perfor-
mance of the proposed method using image cross-correlation in
which we compared the original images of the target speaker
pronouncing the same CVs with synthesized images.

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-11733730



Figure 1: Visual representation of the proposed algorithm

2. Materials and Methods
The proposed algorithm can be divided into two main parts: a)
estimation of the CVs of the target speaker using image trans-
formations on the data of one train speaker to create single
speaker estimation model b) combine single speaker models of
all train speakers to create the final multi speaker based synthe-
sized data. A visual representation of the algorithm can be seen
in Fig 1.

2.1. Data Acquisition

For this work, rtMRI recordings of eight (four male, four fe-
male) native speakers of French were used. The age of sub-
jects was between 21 and 36 years old with average age of
27.25 Subjects had no previous speaking or hearing problems
recorded. The data was acquired on Siemens Prisma 3T scanner
(Siemens, Erlangen, Germany) located in Nancy Central Re-
gional University Hospital under the approved medical protocol
“METHODO” (ClinicalTrials.gov Identifier: NCT02887053).
For acquiring dynamic data, we used a 2D rtMRI sequence.
In our approach, we used radial RF-spoiled FLASH sequence
[9, 20] with TR = 2.22 ms, TE = 1.47 ms, FOV = 19.2×19.2
cm2, flip angle = 5 degrees, and slice thickness is 8 mm. Pixel
bandwidth is 1670 Hz/pixel. The number of radial spokes is 9,
and the resulting image resolution is 136 × 136. The acquisi-
tion time was 44 sec. Images were recorded at a frame rate of
50 frames per second using a 64 channel head-neck antenna.

2.2. Image transformation

Image transformations can be generally divided into two cate-
gories, the rigid and the non-rigid ones. One the one hand, rigid

image transformations are faster and simpler and can capture
well global differences between images like rotation or trans-
lation. On the other hand, non-rigid transformations are more
complex and computationally heavier, but they can better de-
scribe differences locally in images. Since anatomical and artic-
ulation differences between speakers are local, we used a non-
rigid image transformation method, based on an adaptation of
demons algorithm for image registration [21]. To calculate the
transformation between two images a displacement field is com-
puted using the algorithm described in [22]. In order to measure
the image similarity between the transformed and the target im-
age, histogram matching between them is applied and then the
mean square error of the pixels’ intensity is computed.

2.3. Frame alignment

There are various ways that one can align dynamic sequences
between them like applying different types of interpolation at
one sequence to match the reference one. A disadvantage of
such approaches is that they are quite complex and quite hard
to be applied to rtMRI data of the vocal tract. Given sufficiently
high acquisition frame rate, one can use piecewise linear align-
ment as we did in this work. The core idea is that some samples
(let’s call them boundaries) of the two sequences correspond at
the same time points/events (like the beginning or the end of a
phoneme) and the rest samples of the non-reference sequence
are linearly compressed or extended in time. In order to align
the frames, the frame of the modified sequence that is temporar-
ily closer to each frame of the reference sequence is selected as
the corresponding matching frame Fig. 2.
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(a) Time alignment

(b) Frame alignment

Figure 2: The two-step procedure of frame alignment. Linear
piece wise alignment is applied between the reference (Ref) and
the modified sequence to adjust the length and then the clos-
est frame to each of the reference frames are selected from the
modified sequence (SP1 in the example of the figure)

3. Experiments
3.1. Speech Task

In this work we studied 12 CV syllables (/fi/, /fa/, /fu/, /pi/, /pa/,
/pu/, /si/, /sa/, /su/, /ti/, /ta/, /tu/). Midsagittal rtMRI images
of the vocal tract were acquired during the phonation of the
CVs from the subjects. In order to remove coarticulation ef-
fects from previous CVs, subjects were instructed before each
CV to breath from the nose with mouth and lips closed so that
the vocal tract is returned back to the ”neutral” silence position.
To constrain the vowel at the end of the CV, subjects were also
instructed to pronounce /p/ at the end of each CV. Therefore in
practice, subjects were pronouncing /sil//C//V//p/.Even though
images could have been automatically labelled, we chose to
manually label them to achieve better temporal accuracy.

3.2. Single Speaker Estimation

First, one train speaker is used in order to create the model for
the target CV synthesis of the test (target) speaker. A silence
frame was kept at the beginning of each CV labeling. For the
rest of the work, when we refer to CV we mean the CV with the
silence frame at the beginning Fig. 3. For all the image trans-
formations in this work (both at this and at the later steps) we
used MATLAB imregdemons function with 3 pyramid levels

Figure 3: Silence frames of eight speakers. One can notice dif-
ferences in speakers’ anatomy and heads’ position

with values 100, 50, 25 for the image resolution and accumu-
lated field smoothing of 1.3 for the smoothing of the deforma-
tion field. We also applied histogram matching before the image
transformation to have a similar contrast between the images, in
the cases that we transformed images of different subjects.

A set of non-rigid image transformation Tt (t =
1, 2, ..,#CV frames−1) was computed that transforms every
time frame of the CV of the train speaker to the next one. An-
other image transformation Ttrain−test was also calculated that
transforms the silence frame of the train speaker to the silence
frame of the test speaker. The next step was to use Ttrain−test

to adapt the set of Tt transformations from the domain of the
train speaker to the domain of the test speaker. We call this set
of transformations Tsingle. Ttrain−test was applied to the si-
lence frame of the train speaker to synthesise the silence of the
test speaker. Tsingle was then applied to the synthesised silence
frame of the test speaker and propagated to every newly syn-
thesised frame until all CV frames are synthesised. Synthesised
images at this stage have some artifacts due to the adaptation
of the transformation and various transformations that were ap-
plied. In order to suppress them, the training images are mapped
to the synthesised ones to create the single speaker CV frame es-
timation (FEsingle). This process removes some artifacts due
to the small smoothing of the deformation field during the last
transformation which suppresses some abnormalities at a very
local level.

3.3. Multi Speaker Synthesis

At this step, the process described in subsection 3.2 is repeated
for all the N speakers in the training set, therefore N FEsingle

are acquired. Let’s call them FEsingle−n. The duration of
FEsingle−n (in terms of image frames) is directly derived from
the duration of the CV of the corresponding training speaker.
Since every train speaker speaks at a different pace during data
acquisition, every FEsingle−n has different length. In order
to combine them, a specific duration is required to be used as
a reference. Ideally, it would be the CV duration of the tar-
get speaker but since we consider this information unavailable
for the purposes of this algorithm, the average duration of all
FEsingle−n was selected. We note here that all FEsingle−n

have kept the labels from the corresponding training speakers.
This information was taken into account during the calculation
of the reference duration which in fact is equal to the average
frames of C plus average frames of V. Averages were rounded
to the closest integer because they refer to image frames. Lin-
ear piecewise alignment was used to time align all FEsingle−n

with the reference. C and V parts of FEsingle−n CV are in-
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Figure 4: Selected frames for /pu/ of speaker 6. Top: original
images; Bottom: synthesised images

dependently and linearly extended or compressed until the du-
ration of both C and V of it matches with those from the ref-
erence CV. The resulting FEsingle−n are time aligned but not
frame aligned, which means that they have the same duration
with the reference (in terms of time) but the time between each
frame is not stable as their amount varies. Since the output of
the algorithm is the synthesis of pseudoMRI data, the result-
ing sequence should have stable time difference between neigh-
bouring samples based on the rtMRI frame acquisition. Using
the reference duration, the desired time points of the samples
are computed and the frames of the time aligned FEsingle−n

that are closer to the time points are kept. If a frame is closer
to two time points it is copied and kept twice. The resulting
frame estimations FEsingle−n−align have all the same number
of frames and at the same time points. In order to get the fi-
nal multi speaker frame estimation FEmulti we average the the
images of all FEsingle−n−align across each frame.

3.4. Evaluation

For the purpose of evaluation, we used 8-fold cross validation
using seven speakers for train and one for test on the 12 stud-
ied CVs. Original frames OF of CVs of the test speaker were
compared with FEmulti. FEmulti and OF were aligned with
the procedure described in subsection 3.3 using OF as a refer-
ence. To each frame of the aligned sequence FEmulti−align,
histogram matching was applied in order to match with the cor-
responding frame of OF . In order to validate the results, we
used cross correlation between the corresponding images of the
two sets, normalized by the autocorrelation of the correspond-
ing OF images. Total average after cross validation of corre-
lation coefficient for all CVs is 0.9361 with standard deviation
(sd) of 0.0046. Detailed results can be seen in Table 1.

4. Discussion
By visually examining the results in Fig 4, one can notice that
synthesised images look quite similar to the original ones. How-
ever, synthesised images are more blurry because of the averag-
ing of the training deformation fields of the training speakers
at the multi speaker synthesis step of the algorithm. Addition-
ally, there is something visually similar to the shadow effect
that appears at the tongue in the synthesised images. There are
two main reasons responsible for this behaviour. The first one
is that since only a silence frame was used for synthesising the

CV /fi/ /pi/ /si/ /ti/
mean 0.9402 0.9384 0.9356 0.9373

sd 0.015 0.0149 0.0152 0.0153
CV /fa/ /pa/ /sa/ /ta/

mean 0.9404 0.9317 0.931 0.9363
sd 0.0103 0.0158 0.0161 0.0145

CV /fu/ /pu/ /su/ /tu/
mean 0.9388 0.9254 0.9374 0.9404

sd 0.0131 0.0162 0.0161 0.0107

Table 1: Cross validated results of correlation coefficient per
CV. Total average for all CVs is 0.9361 with sd 0.0046

images, every small error on the transformations that starts from
the first frames of the C is further propagated and stacked with
further errors until the last frames of V. This is further supported
by the fact that the ”fake” shadow effect is more obvious the
further an image is from the beginning. The second reason is
that every speaker has quite a different style of speaking which
makes the single speaker synthesised images slightly different
between them. When images are combined in the multi speaker
part, these small single speaker estimation differences are also
affecting the ”fake” shadow effect. This effect is more obvious
at the front part of the region of the tongue as it is the articulator
with the bigger movement in the examined examples, therefore
it is more affected by stacking errors and speaking differences
between subjects.

Another remark is that apart from the point that mentioned
earlier, the regions of the vocal tract like the shape of the palate,
the lips, the velum etc appear to visually be very similar be-
tween original and synthesised images, which is further sup-
ported by the numerical evaluation that gives an average similar-
ity of 0.9361 between them (maximum value could be 1 which
would show identical images). Additionally, the proposed al-
gorithm appears to be quite robust since the matching of the
synthesised and the original images is quite high, even though
training subjects have very different anatomies and very differ-
ent head positions during the MRI acquisition as can be seen
in Fig. 3 This visual conclusion is again supported by the nu-
merical results of 0.0046 standard deviation that the average
similarity value has.

Finally, by using standard automatic techniques to label im-
ages in the beginning, for example by using the audio from
simultaneous MRI and sound recordings, this algorithm is
fully automated giving flexibility in synthesising CVs of tar-
get speaker using only its silence frame. Future directions of
this work could be to further examine how the blurriness or the
”fake” shadow effects could be suppressed in order to synthesis
better quality images. One could also think of extending this
algorithm to synthesise VCV, CVC, whole words or phrases.
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