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Abstract

Acoustic-to-articulatory inversion (AAI) methods estimate
articulatory movements from the acoustic speech signal, which
can be useful in several tasks such as speech recognition, syn-
thesis, talking heads and language tutoring. Most earlier inver-
sion studies are based on point-tracking articulatory techniques
(e.g. EMA or XRMB). The advantage of rtMRI is that it pro-
vides dynamic information about the full midsagittal plane of
the upper airway, with a high ’relative’ spatial resolution. In
this work, we estimated midsagittal rtMRI images of the vo-
cal tract for speaker dependent AAI, using MGC-LSP spectral
features as input. We applied FC-DNNs, CNNs and recurrent
neural networks, and have shown that LSTMs are the most suit-
able for this task. As objective evaluation we measured nor-
malized MSE, Structural Similarity Index (SSIM) and its com-
plex wavelet version (CW-SSIM). The results indicate that the
combination of FC-DNNs and LSTMs can achieve smooth gen-
erated MR images of the vocal tract, which are similar to the
original MRI recordings (average CW-SSIM: 0.94).

Index Terms: magnetic resonance imaging, acoustic-to-
articulatory inversion, deep learning

1. Introduction

Articulation is directly linked with the acoustic speech signal
in the speech production process. The acoustic-to-articulatory
inversion (AAI) methods estimate articulatory movements from
the acoustic speech signal [1]. Recently, there has been a signif-
icant interest in AAI, because learning the correlation between
articulation and acoustics could improve the performance of
several tasks such as speech recognition [2], synthesis [3] and
talking heads [4]. It can help the visualization of speech pro-
duction as 3D articulatory animations for pronunciation training
and language tutoring [5].

Statistical mapping techniques are suitable for the conver-
sion of articulatory movements into speech and vice versa [6, 7,
8, 9, 10]. Both speaker dependent (SD-AAI) and independent
(SI-AAI) approaches are available [11]. Several methods have
been proposed to tackle the SD-AAI problem including code-
books [12], Gaussian Mixture Models (GMM) [13, 14], Hid-
den Markov Models (HMM) [15], and Mixture Density Net-
works [16]. Furthermore, during the past few years, researchers
started to use Deep Neural Networks (DNN) [17, 18, 19], con-
volutional [20] and recurrent networks [21]. The lowest error in
predicting articulatory position was achieved with the combina-
tion of acoustic and textual input, using a bottleneck long-term
recurrent convolutional neural network (BLTRCNN) [22].

Definitely, all these approaches need parallel acoustic-
articulatory data for training the AAI model. Hence, most above
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inversion studies are based on Electromagnetic Articulography
(EMA) or X-ray Microbeam (XRMB) data, which can track
only several points of the articulatory organs, and therefore pro-
vide limited input information. Compared to EMA and XRMB,
imaging methods (e.g. UTIL: Ultrasound Tongue Imaging and
MRI: Magnetic Resonance Imaging) have the advantage that
the tongue surface is fully visible [9, 10, 23, 24]. The typi-
cal result of 2D ultrasound and 2D MRI recordings is a series
of gray-scale mid-sagittal images in which the tongue surface
contour has a greater brightness than the surrounding tissue and
air. We started to use raw scanline tongue ultrasound data for
SD-AAI using feedforward DNNs, with 25-dimensional MFCC
as input [25]. The results indicated that already with a simple
DNN consisting of two hidden layers (1000 neurons each) rel-
atively good accuracy could be achieved. These initial results
showed that SD-AAI is feasible using ultrasound tongue imag-
ing — but until now, only simple DNNs were used for this task.

Recently, significant advances in MR research (software,
hardware, and reconstruction strategies) have allowed real-time
MRI (rtMRI) to be a powerful modality for speech production
research and for investigating the movement of the articula-
tors [23, 24, 26]. The advantage of rtMRI is that it provides
dynamic information about the full midsagittal plane of the up-
per airway, even during continuous spoken utterances. It can
capture not only lingual, labial, and jaw motion but also the
articulatory motion of the velum and the pharyngeal region,
which is typically not possible with other articulatory acqui-
sition techniques. Besides, such imaging data helps to com-
prehend the generation of coronal, pharyngeal, and nasal seg-
ments. The sampling rates of rtMRI are relatively low (around
20-25 fps), but are acceptable for running speech. A disad-
vantage is the large background noise in speech recordings, but
noise cancellation can yield an acceptable speech signal, which
is synchronized to the articulatory signal. Also, the presence
of a substantial number of artifacts and noise make automatic
extraction and interpretation of features a difficult problem.
Overall, rtMRI provides high relative spatial information in the
midsagittal view with relatively low temporal resolution [24];
therefore it is a potentially suitable technique for the target of
acoustic-to-articulatory inversion.

Several studies have applied MRI for articulatory-related
speech technologies: e.g. phoneme classification from articu-
lation [27, 28] and acoustic-to-articulatory inversion [29, 30].
Saha and his colleagues experimented with identifying differ-
ent vowel-consonant-vowel (VCV) sequences from vocal tract
rtMRI [27]. Long-term Recurrent Convolutional Networks (in-
cluding a pretrained ResNet50) models were used, which make
the network spatiotemporally deep enough to capture the se-
quential nature of the articulatory data, for the classification
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task. Van Leeuwen et al. trained a convolutional neural network
(CNN) for the classification of 27 different sustained phonemes
from MRI, and reveal that the network has learned to focus on
those parts of the images that represent the crucial articulatory
positions needed to distinguish the different phonemes [28].

Kaburagi presented a method to estimate the cross-sectional
area and length of the vocal tract from a speech spectrum [29].
For data, a set of vocal-tract area functions were used for 10
English vowels obtained from static MRI measurements (the
subject was a male native speaker of English). However, the
estimation result is the parameterized vocal tract, not the MR
images itself. As the first and single inversion study having
MR images as the target, Li et al. present a system for AAI
using midsagittal rtMRI, where restricted Boltzmann machine,
GMM and linear regression are applied for the mapping [30]. In
this task, the inputs of the machine learning models are acous-
tic feature vectors (24-order line spectral pairs, with a context
window of 10 acoustic frames), whereas the targets are the gray
value vectors of the 68 x68 pixel MR images. According to the
results, deep architectures are able to obtain better inversion ac-
curacy than the GMM-based method, in terms of RMSE [30].
However, only a single speaker (f1) was used from the USC-
TIMIT database [26].

Based on this overview, rtMRI data has sporadically been
used previously for direct acoustic-to-articulatory inversion. In
the current paper, we train various DNNs (fully connected,
convolutional, and recurrent neural networks) for acoustic-to-
articulatory inverse mapping, using real-time magnetic reso-
nance images of the vocal tract, applying the data in a speaker-
specific way.

2. Methods
2.1. Data

We used two male (ml and m2) and two female (f1 and f2)
speakers from the freely available USC-TIMIT MRI database
[26]. This contains large-scale data of synchronized audio
and rtMRI for speech research, from American English sub-
jects. The vocal tracts were imaged in the mid-sagittal plane
while lying supine and reading 460 MOCHA-TIMIT sentences.
The MRI data were acquired using a Signa Excite HD 1.5T
scanner with an image resolution in the mid-sagittal plane of
68x68 pixels (2.9x2.9mm). The image data were recon-
structed as 23.18 frames/second. The audio was simultaneously
recorded at a sampling frequency of 20 kHz inside the MRI
scanner while subjects were imaged. Noise cancellation was
also performed on the acoustic data.

2.2. Vocoder

To create the acoustic inputs, we encoded the audio recordings
using an MGLSA vocoder [31] at a frame shift of 1/(23.18 fps)
=863 samples, which resulted in FO and 24-order spectral (Mel-
Generalized Cepstrum, Line Spectral Pair, MGC-LSP) features.
The spectral features served as the training inputs of the DNN.

2.3. Deep neural network architectures

In our earlier studies on ultrasound-based inversion [25], we
were using fully-connected feed-forward neural networks (FC-
DNN). For articulatory mapping, we showed that CNN and
CNN-LSTM were also beneficial [10]. Here, we test similar
DNN types. In all cases and for all speakers, we trained speaker-
specific models, and we split the data into 430 sentences for
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Figure 1: Block diagram of the LSTM network.

training, 20 sentences for validation, and 10 sentences for test-
ing. We used Adam optimizer, trained the networks for 100
epochs, and applied early stopping with a patience of 5 on the
validation loss. The target MRI pixels were scaled to [0-1],
while the input spectral features were normalized to zero mean,
unit variance. The data is passed to the networks in batches of
128 frames. The cost function applied for the MRI pixel re-
gression task was the mean-squared error (MSE). In all hidden
layers, ReLU activation was used.

2.3.1. FC-DNN (baseline)

In the simplest case, we trained fully connected (FC) DNNs
with 5 hidden layers, each hidden layer consisting of 1000 neu-
rons. The input layer consisted of 25 neurons (taking the MGC-
LSP dimensions). The output layer was a linear one (4 624 neu-
rons), with one neuron for each MRI pixel.

2.3.2. CNN

Next, we tested convolutional neural networks, as typically,
they are more suitable for the processing of images than sim-
ple FC-DNNs. The CNN input was 25-dimensional MGC-LSP.
First, two dense layers were used with 500 and 17x17x8 =
2312 neurons, respectively. There was one convolutional layer
(kernel size: 33, number of filters: §), preceded and followed
by max-pooling. The last layer was a convolutional one with
linear activation and 68 x 68 pixel MR image as the target.

2.3.3. LSTM

Also, we hypothesized that using multiple consecutive spectral
features as input can increase the accuracy of the regression.
The most ambitious network in this work is a recurrent one
consisting of a combination of FC layers and Long Short-Term
Memory units (LSTMs). The motivation for designing this net-
work comes from the fact that in [10], we achieved better results
when using consecutive ultrasound frames. Figure 1 shows the
architecture of the LSTM network. It consists of two distinct
parts: a fully connected beginning (three fully connected lay-
ers with 575 neurons each), and a recurrent end (two LSTM
layers with 575 neurons each). We use a sequence size of 10
(accounting for roughly 430 ms of the input spectral data) in
order to incorporate time information. To keep the FC-DNN
(baseline) and the LSTM comparable with respect to parame-
ter count, both models have approximately 8.6 million tunable
parameters — this was the reason for having 575 neurons in the
layers of the recurrent neural network.
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Figure 2: Original and predicted MRI image sequence by the three DNNs, from speaker f1. The sentence starts with ‘Her...” (f1_146)

3. Results

After training the neural networks, the prediction accuracy was
evaluated on the test set (10 sentences for each speaker). We
generated MR image sequences using the trained DNN models
by having the MGC-LSP features of the test sentences as input.

3.1. Demonstration sample

A sample test sentence from speaker ’fl1’ (not appearing in
the training data) was chosen for demonstrating how the three
systems deal with the prediction of the MRI pixels. Fig. 2
shows the same image sequence from the original record-
ing and the predictions of the DNNs. In general, the DNN-
predicted MR images are close to the original, but the FC-
DNN and CNN cannot follow the fast changes of the refer-
ence, while the LSTM seems to be smoother. More video sam-
ples can be found at http://smartlab.tmit.bme.hu/
interspeech2020_speech2mri.

3.2. Objective evaluation

On the validation set and on the synthesized sentences (being
the test set), we first measured the Mean Square Error (MSE)
between the original and predicted MRI pixels. The calcula-
tions were done on the [0-1] normalized features. The normal-
ized MSE values calculated on the validation and test are shown
in Table 1, separately for each speaker. Overall, the tenden-
cies are the same for all speakers: the weakest network seems
to be the basic fully-connected one (test NMSE: 0.0043), fol-
lowed by the CNN (test NMSE: 0.0049), and finally, the LSTM
having the smallest error (test NMSE: 0.0036). The difference
between the FC-DNN and CNN is small, whereas the LSTM is
significantly better than these two systems. Interestingly, the re-
sults show some speaker dependency: the test NMSE is smallest
for 1 (0.0023), and highest for f2 (0.0046), thus being roughly
twice as bad. Another observation is that for speaker m1, the
LSTM network is not better than the FC-DNN and CNN.

To measure the naturalness of the reconstructed MR im-
ages, two other metrics were chosen, which have a higher cor-
relation with subjective quality. Both of these are calculated
over each frame, where y is the original image and ¢ is the
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Table 1: NMSE scores on the validation and test set.

Normalized MSE (validation)
speaker FC-DNN [ CNN [ LSTM
f1 0.0024 0.0026 0.0021
2 0.0041 0.0042 0.0038
ml 0.0028 0.0030 0.0026
m2 0.0031 0.0034 0.0028
average 0.0031 0.0033 0.0029
speaker H Normalized MSE (test)
f1 0.0028 0.0032 0.0023
2 0.0060 0.0065 0.0046
ml 0.0035 0.0039 0.0035
m2 0.0050 0.0058 0.0038
average 0.0043 0.0049 0.0036

estimated image from the DNN architecture. Structural Sim-
ilarity Index (SSIM) [32] (which we used earlier to compare
ultrasound tongue images [33]) measures three kinds of visual
impact of changes in luminance [, contrast c and structure s be-
tween two images:

SSIM (y, ) = 1y, 91" [c(y, ) [s(y. )]

In our experiment, the SSIM index is calculated by 11x11
circular-symmetric Gaussian weighting function, with a stan-
dard deviation of 1.5 pixels.

Complex Wavelet Structural Similarity (CW-SSIM) [34] is
an extension of the SSIM method to the complex wavelet do-
main, which is a novel image similarity measurement robust to
small distortions:

_ 2|5, wywy| + K
= I L
Zz:l lwy | + 21:1 [wg,i|> + K

where w represents the complex wavelet coefficients of the
two images. The * indicates the complex conjugate of w, and
K is a small positive stabilizing constant [33]. In case of both
SSIM and CW-SSIM, the resulting range is between [0-1], and
the higher value means more similar images (whereas zero is
for the most diverse images).

CW — SSIM(y, )



Table 2: SSIM and CW-SSIM scores on the test set.

SSIM / CW-SSIM
speaker | FC-DNN [ CNN | LSTM
f1 0.77/094 | 0.75/0.94 | 0.80/0.95
2 0.70/0.92 | 0.68/0.92 | 0.73/0.94
ml 0.80/092 | 0.77/091 | 0.81/0.92
m2 0.75/092 | 0.73/0.92 | 0.77/0.94
average || 0.76/0.93 | 0.73/0.92 | 0.78/0.94
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Figure 3: SSIM and CW-SSIM over time, from speaker f1. The
utterance, between frames 28-92 is ‘Her auburn hair reminded
him of autumn leaves.’ (f1_146)

Table 2 shows the SSIM and CW-SSIM scores measured
on the synthesized sentences, separately for each speaker and
DNN type. The scores are not as speaker dependent as it was
the case with NMSE. The tendencies across the neural network
type show that the CNN achieved the lowest scores, followed
by the FC-DNN, and finally, the LSTM having the most similar
predicted images to the original MR frames; but all of the dif-
ferences are small and not significant. Fig. 3 presents SSIM and
CW-SSIM over time, on the f1_146 sample sentence. The utter-
ance starts around frame 28 and ends around frame 92. Frames
1-27 and 93-125 are silence. The figure shows that the FC-
DNN and CNN can create videos that have quick variations
across consecutive frames (e.g. between frames 28-40, where
the sentence starts), whereas the result of LSTM is smoother.
In general, the MR frames for the silence period are most sim-
ilar to the original MR images, while the LSTM can achieve
high scores even in case of the parts where the articulators are
moving, which is clearly beneficial.

According to these objective experiments, all measures
have shown the advantage of using recurrent networks (namely,
LSTM), instead of the networks which are taking single images
as input (the FC-DNN and CNN types).

4. Discussion

In general, recurrent neural networks are more suitable to
process sequential data than convolutional or simple fully-
connected networks, and they can generate more smooth con-
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secutive images. As Saha et al. compare for MRI-based phone
recognition [27], it is important to incorporate spatial and tem-
poral feature extraction steps to capture complementary infor-
mation from the individual consecutive still frames as well as
between the frames. In the current study, we showed that
LSTMs are more suitable to process spectral features and MR
images than FC-DNNs and (2D) CNNs.

Li and his colleagues presented the first study in SD-AAI
with rtMRI of the vocal tract as the target [30]. With stacked
RBMs and Gaussian-Bernoulli RBMs they achieved an average
RMSE of 17.74 (measured on the unnormalized pixels). How-
ever, when checking the generated images, we can see that the
shape of the vocal tract is over-smoothed. They indicate that in
the resulting MR images, there is a relatively higher error in the
outline of nose which is believed to be caused by the instability
of head position in the USC-TIMIT database.

We can compare the results of this study to acoustic-to-
articulatory inversion experiments that were using other imag-
ing techniques. Ultrasound can only capture the movement of
the tongue, but with higher frame rates (around 100 fps). In
our earlier experiment for speech-to-ultrasound conversion, the
typical values of SSIM were around 0.7 and CW-SSIM around
0.8, with a 2-layer FC-DNN for a single female speaker [25],
whereas for rtMRI with the LSTM here we achieved SSIM
between 0.73-0.81 and CW-SSIM between 0.92-0.95, de-
pending on the speaker. Wei et al. used GMMs and DNNs
for ultrasound-based AAI and achieved (unnormalized) MSE
around 32-35, which is not directly comparable to our re-
sults [35]. However, their study was quite limited as they only
focused on Chinese vowels, i.e. they did not test longer speech.

Although the resolution of the target MR images was only
68 x 68 pixels, this accounts for a larger 'relative’ spatial resolu-
tion compared to ultrasound, as MRI can show the whole vocal
tract. Our experiments have indicated that this is an advantage
of rtMRI, and the high relative spatial resolution is more impor-
tant than the relatively low (around 20-25 fps) time resolution.

5. Conclusions

In this work, we used midsagittal rtMRI images of the vocal
tract for speaker dependent acoustic-to-articulatory inversion.
We applied FC-DNNs, CNNs, and recurrent neural networks
and have shown that LSTMs are the most suitable for this task.

The target realtime MR images have a relatively low spatial
and temporal resolution (but high ’relative’ spatial resolution)
and are infested with noises and reconstruction artifacts [27].
In our work, we were using raw MR images and did not apply
any preprocessing. However, noise and artifact reduction on the
target images, or other spectral feature extraction methods [20]
might enhance the accuracy of the mapping. Stabilizing the
head position on the MR images can also be beneficial [30].

As pointed out in Section 1, the results in AAI might be use-
ful for speech recognition [2], synthesis [3], talking heads [4],
and for pronunciation training and language tutoring [5].

The keras implementations are accessible at https://
github.com/BME-SmartLab/speech2mri/.
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