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Abstract 
In several areas of speech research, articulatory models able to 
produce a wide variety of speech sounds, not specific to any 
language, are needed as a starting point. Such research fields 
include the studies of sound system emergence in populations, 
infant speech acquisition research, and speech inversion 
research. Here we approach the problem of exploring the 
possible acoustic outcomes of a dynamic articulatory model 
efficiently, and provide an entropy based measure for the 
diversity of the explored articulations. Our exploration 
algorithm incrementally clusters produced babble into a number 
of target articulations, aiming to produce maximally interesting 
acoustic outcomes. Consonant gestures are defined as a subset 
of articulatory parameters and are thus superposed on vowel 
context, to provide a coarticulation effect. We show that the 
proposed algorithm explores the acoustic domain more 
efficiently than random target selection, and clusters the 
articulatory domain into a number of usable articulatory targets. 
Index Terms: articulatory exploration, speech synthesis, 
babbling, speech sound discovery 

1. Introduction 
Infants’ vocalizations develop rapidly during the first year of 
their lives, from quasivocalic sounds to vowels, and further to 
canonical and variegated babbling, consisting of alternating 
consonant and vowel sounds [1,2]. The first words are produced 
around 12 months of age, but the fine tuning of the articulatory 
skills takes years of development to reach adult capabilities 
(e.g. [3]). Feedback by caregivers is seen to guide babbling 
[4,5], and vocal imitation by caregivers may teach infants the 
mapping between the acoustic outcomes of their own 
articulatory productions and the caregivers’ vocal productions 
(e.g. [6,7]). 

Computational modeling can be used as a tool to simulate 
infant language learning. If we manage to implement an 
artificial system that learns speech related phenomena similarly 
to a normal infant (given human-like learning environment), we 
can hypothesize cognitive processes that may underlie speech 
learning, possibly offering new insights to speech that can also 
be useful for technical solutions, such as speech recognition. 
The human-like learning approach often begins with a 
simulated articulatory model, that is able to produce human-like 
vocal sounds. Articulatory modeling has been used in a wide 
variety of speech related studies: studying the neural processes 
underlying speech production and perception (e.g. [8]), learning 
speech motor control ([9]), using articulatory representations to 
boost speech recognition (e.g. [10,11]), learning of speech 
imitation [12-15] and simulating emergence of sound systems 
in a population [16].  

In numerous studies a method for articulatory exploration 
is needed, so the learner can discover articulations that lead to 

useful acoustic speech outcomes. This task is often very 
challenging due to the high dimensionality of the articulatory 
parameter spaces, and the non-linearity of the articulatory-to-
acoustic mapping – in some articulatory regions, small changes 
in articulation produce large changes in the acoustic output, and 
in some regions, large articulatory changes produce small 
changes in the acoustic output (e.g. [17]). 

Guenther’s [9] DIVA model uses random babbling, but the 
work’s purpose is not to explore the articulatory space 
autonomously. Rather the learning in this model is guided by 
an expert system that already knows the target speech sounds in 
the articulatory domain. Moulin-Frier, Nguyen and Oudeyer 
[18] and Najnin, and Banerjee [19] use dynamic articulatory 
exploration using the DIVA vocal tract model, to show that the 
complexity of vocalizations can increase and shift towards 
imitation of adult sounds intrinsically, without hard-coded 
goals. They do not try to discover phonetically realistic speech 
sounds automatically. 

Many works where articulatory exploration is studied, 
concentrate only on vowel productions [12, 15, 20, 21]. In many 
of these works low dimensional acoustic features, such as 
formant frequencies, are used. When dynamic babbling and 
consonant sounds are also taken into account, both articulatory 
and auditory trajectories become continuous and the 
articulatory state space grows dramatically when compared to 
static vocal tract configurations. Moreover, high dimensional 
acoustic features, such as Mel-Frequency Cepstral Coefficients 
(MFCCs), are often needed to discriminate between unvoiced 
consonant sounds, where formant estimation is unreliable or 
impossible.  

In studies where babbling is allowed to be dynamic, the 
focus is often not on vocal exploration, but rather on modeling 
the acquisition of some specific aspects of speech production 
and perception or the underlying neural processes, and the 
babbling is aided by giving a restricted set of possible 
articulatory parameters (e.g. [8, 22-24]). 

Howard and Messum [13, 14] use a vocal tract model to 
discover dynamic vocal patterns, including consonants and 
vowels, automatically. They use sensory salience (consisting of 
acoustic and touch sensations), diversity and articulatory effort 
to create a self-reward signal for the learner. After a discovery 
phase, motor patterns are clustered to a smaller number of 
categories and divided to their consonant and vowel 
components to recombine to a variety of syllables. To ensure 
efficient exploration of the complete vocalization space, they 
used separate optimization runs to discover vowels and 
consonants.  

Here we propose – to our knowledge for the first time – an 
incremental vocal exploration algorithm, that discovers realistic 
articulatory consonant (C) and vowel (V) targets incrementally. 
The algorithm compresses dynamic babble consisting of a 
sequence of random consonants and vowels produced by a 
vocal tract model continuously into a small number of 
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categories, based on their acoustic and articulatory 
characteristics. We assume that the movements between these 
targets are constrained by the vocal tract anatomy, and that the 
task of the speaker is just to execute these targets in a sequence, 
on certain time moments. Importantly, the consonant targets in 
this study are defined only for a subset of the 9 articulatory 
parameters. This characteristic leads automatically to context 
dependent consonant realizations, e.g. a closure performed only 
with the tongue tip parameters leaves the other vocal tract 
parameters untouched, and they can freely vary depending on 
the previous and following vowel sounds. The context 
dependency, or coarticulation, of speech sounds is a typical 
phenomenon of human speech, and an important aspect to take 
into account in good quality speech synthesis [25]. We also 
offer a solution of how the acoustic space spanning the very 
differing characteristics of consonants and vowels can be 
explored more efficiently than with a simple random sampling. 

Our aim in this work is to show that realistic speech sounds 
can be discovered incrementally with a simple clustering 
algorithm with a reasonably small number of babble 
productions, and without external feedback or knowledge of the 
distribution of sounds in the learning environment or other 
speakers. This kind of vocal exploration can be used as a 
starting point when implementing more complicated 
computational models to study for example speech acquisition, 
acquisition of imitation skills or population level emergence of 
phonetic systems. The articulatory-acoustic trajectories of this 
unsupervised exploration algorithm also offer a starting point 
for training a rough universal (i.e. not language-specific) speech 
inversion mapping from acoustics to articulation, that can be 
then tuned towards specific characteristics of a given language 
in later learning phases. 

2. Articulatory model 
We use the LeVI (Learning Virtual Infant) acoustic model, 
implemented in MATLAB and described in detail in [26] and 
its supplementary material. The synthesizer produces dynamic 
trajectories of nine articulatory parameters, given their target 
locations and target time instances. The 9 parameters control 
the positions of tongue base and tip (4 parameters in total), 
hyoid bone position, velum opening, jaw angle, lip protrusion 
and lip length. The movements between points follow smooth 
minimum-jerk trajectories, known for example from human 
arm movements (see e.g. [27]). 

In the simulations we use two different kinds of targets: 
vowel and consonant targets. Vowel targets have all the nine 
parameter values defined and provide the context onto which 
consonants are superposed to. Consonant targets have only a 
subset of the 9 targets defined. Thus, a vowel target might look 
like a vector [0.3, 0.7, 0.2, 0.2, 0.2, 0.5, 1, 0.2, 0.2] and a 
consonant target [nan, nan, 0.8, 0.9, nan, nan, nan, nan, nan]. If 
these two targets are placed subsequently in time, only the 
tongue tip x and y coordinates, defined for the consonant, move 
to the target positions at the given moment in time. Consonant 
targets are given a lookahead time of 150 ms, a hold time of 100 
ms and a release time of 150 ms (see [26] for details. All the 
parameters take values in the range [0, 1]. 

3. The learning algorithm 
We set the algorithm to search for T = 200 speech sound 

targets in total. The general idea of the algorithm is to produce 
babbled vocalizations one by one, and after every production, 

merge the obtained acoustic and articulatory vectors so that 
maximally T categories remain. The merging (or clustering) 
method used defines what kinds of target vectors are left when 
the babbling is terminated. We thus maintain a list, Lart, of T 
articulatory target vectors and a list, Lacu, of corresponding 
MFCC feature vectors representing the approximate acoustic 
outcome of the articulatory target. Additionally, a counter 
vector c is saved for all T targets, to keep track how many 
produced vectors have been merged into each target. 

The model is set to choose two vowels and two consonants 
on each iteration, and produce a V1C1V1C1V2C2V2C2 
vocalization on every iteration, where the interval between 
consecutive targets is set to 400 ms. The interesting articulatory 
targets are searched from a region of [t – 100 ms, t + 100 ms], 
where t is the time instance of the given target. Since the 
synthesizer outputs data every 10 ms, we get 21 acoustic and 
articulatory vectors per every babbled articulatory target. After 
every babble the output vectors are appended to Lacu and Lart 
correspondingly. When these lists end up with more than T 
vectors after a babbled utterance, vectors are iteratively merged 
until only T entries remain, before the next utterance is created. 

Standard 12-dimensional MFCC features are extracted 
from every vocalization. We perform whitening of the features 
also online, by calculating the mean µ and the standard 
deviation s of the MFCC-vectors incrementally. Lacu stores the 
non-whitened MFCC-features, that are whitened using the 
updated µ and s, before every distance calculation. We use two 
ways of selecting babbled targets, random selection and 
selection based on known targets, described below. Random 
selection is used before T target candidates are found, and after 
that, with 50% probability for each selected target. 

Random selection: Vowel targets are chosen randomly 
from a uniform distribution over the allowed ranges of the 9 
articulatory parameters. For consonants, for each articulatory 
parameter it is given a 40% probability that a given parameter 
takes a value from the edges of its allowed range, otherwise it 

Algorithm 1. Pseudocode for the merging algorithm 
after each vocalization 

 While the number of entries in Lacu and Lart  is larger than T: 
1. Calculate pairwise distances between the entries in the 

acoustic and articulatory lists and sum them for total 
distance: 

𝐷!,# = 𝐷!,#$%& +𝐷!,#$'( 
2. Find the pair with the minimum distance: 𝑖)!* and 

𝑗)!*  
3. Calculate the new mean for the merged acoustic 

vector:  𝜇*+,$'( =
-!"!#
$%& ∙'!"!#/-'"!#

$%& ∙''"!# 

'!"!#/''"!#
 

4. Calculate if the merge would increase acoustic 
diversity. If the acoustic novelty of 𝜇*+,$'(  is larger than 
that of 𝜇!"!#

$'( , acoustic diversity increases due to the 
merge. Only if acoustic diversity increases, update 
acoustic and articulatory means: 

 𝜇!$'(= 𝜇*+,$'(  

 𝜇!$%& = 
-!"!#
$() ∙'!"!#/-'"!#

$() ∙''"!# 

'!"!#/''"!#
 

5. Update count: 
𝑐! = 𝑐!"!# + 𝑐#"!# 

6. Delete the entry from the position 𝑗)!* from the 
acostic and articulatory vector lists Lacu and Lart 
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is chosen as for vowels. This is done in order to encourage vocal 
tract closures. Also, for context dependency of consonants, 
some articulator parameters are set to not-defined (NaN) values. 
From one to 8 parameters are set to (NaN) values, leaving at 
least one articulatory parameter defined to perform the 
consonant gesture. 
Target based selection: The vowel or consonant articulatory 
target is selected from Lart. This is done based on weighted 
random selection over acoustic novelty scores given for each 
target. The acoustic novelty is calculated after every babble, for 
every member t of the list Lacu, as the median of its Euclidean 
distance to its 20 closest targets. The novelty measure is used to 
weight exploration to those regions in the acoustic domain that 
have little neighboring targets, and that might thus be worth 
exploring further to increase acoustic diversity. On the 
articulatory correspondent of the chosen target, uniformly 
distributed random noise of magnitude [-0.005, 0.005] is added, 
in order to aid exploration around the given target. 

3.1. Merging of target articulations 

During the merging phase, consonants and vowels are kept 
separate, so that vowel targets can merge only with vowel 
targets, and consonants with consonants. While merging, the 
targets that are close to each other both in the acoustic and 
articulatory domain are merged together by averaging. Using 
both representations in the distance measure encourages finding 
locally linear regions in the articulatory-acoustic domain, where 
a small shift in the articulatory target leads to a predictable shift 
in the acoustic target. Measuring distances in the acoustic 
domain only would lead to a problem in the merging: due to the 
many-to-one property of articulation, two very different 
articulations might lead to the same acoustic outcome, but the 
acoustic output of the averaged articulatory vectors could be 
something very different from the original output. The merging 
is done only if the acoustic diversity around the new target 
increases. This is done in order to encourage the targets moving 
to acoustically more diverse regions. Without this rule, the 
merging is seen to shift the targets towards more neutral, and 
more easily articulated vocalizations. Pseudocode of the 
merging procedure is visible in Algorithm 1. 

The pairwise distance between the vectors in Lacu, 𝐷!,#$'(, is 
calculated simply as the Euclidean distance between the MFCC 
vectors. Similarly, for vowel sounds, the articulatory distance 
𝐷!,#$%&  is calculated as the Euclidean distance over the full 
parameter vectors. In case of consonants, where only a subset 
of the articulatory parameters is defined, Euclidean distance is 
calculated over the common set of defined parameters per 
vector pair. In the latter case the Euclidean distance is corrected 
by scaling, so that missing vector elements do not show as 
relatively smaller distance between articulatory vectors. When 
articulatory vectors considering consonants are merged, only 
the common set of defined parameters are kept in the resulting 
merged vector. We are thus assuming that the similarity of the 
acoustic vectors was due to the movement of the common 
articulatory parameters. 

4. Experiments 
It is not a trivial task to measure how well an articulatory 
exploration algorithm performs in discovering interesting 
articulations. Here we propose that a good exploration 
algorithm discovers a limited set of articulatory targets that 
capture the diversity of the possible acoustic outputs of the 

vocal tract model maximally well. Optimally this set of targets 
should include sounds that resemble all the possible phones in 
human languages, a task that is very difficult to achieve with 
physically simplified vocal tract models. This maximal acoustic 
space is difficult to define by itself, since systematically 
exploring all articulatory combinations of a high-dimensional 
articulatory space would take millions of productions.  

We begin the evaluation of the algorithm with producing 
60,000 vocalizations with a random babbling algorithm, that 
does not perform clustering, target discovery, or novelty-based 
target selection, but just chooses consonant and vowel targets 
randomly (equally as in the random selection phase of the 
actual learning algorithm), on every vocalization. MFCC 
features are extracted from this set and their means and standard 
deviations are saved in order to perform the zero-mean and unit-
variance normalization of the features in the first analysis. 

In order to see how the extent of the discovered acoustic 
space grows when the number of exploratory babbles increases, 
we run the learning algorithm five times independently, for 
10,000 vocalizations each. We take all the babbled audio files 
until the Nth babble, extract and normalize the MFCC features 
from the audio files, reduce their dimensionality to three using 
principal component analysis, and investigate the volume of the 
convex hull of the acquired space. The development of this 
volume is compared to the volume of a random babbling 
algorithm (implemented equally to the description in the 
previous paragraph). In Figure 1 it can be seen that the acoustic 
space created by the learning algorithm stretches out faster than 
that of the purely random babble. The black cross shows that 
even after 60,000 random babbles, the volume of the acoustic 
space remains smaller than that of the learning algorithm. From 
these runs it appears that the learning algorithm is able to find 
novel acoustic outcomes faster than random babbling.  

Now we want to find out how diversely the acoustic 
outcomes of our model are distributed in the vocal tract model’s 
acoustic space. Using the final articulatory targets discovered 
during each learning run, we create five times 20 minutes of 
random speech (200 babbles of 20 articulatory targets each) by 
alternating vowel and consonant targets. The same amount of 
speech is created with random target selection, by choosing an 
equal number of vowel targets and consonant targets as found 
in the corresponding learning run. The MFCC-features of all the 
resulting speech is appended together, in order to have a 
maximally stretched out acoustic space. 

 
Figure 1. The volume of the convex hulls of the MFCC-

features gathered up to the Nth vocalization. The average and 
standard deviation of five runs of the learning algorithm 

(blue), and babbling based on random target selection (red) is 
shown. The black cross shows the convex hull volume of the 

initial 60,000 random babbles. 

0 2000 4000 6000 8000 10000 12000
Number of vocalizations

0

200

400

600

800

1000

1200

1400

1600

1800

Vo
lu

m
e 

of
 3

D
 c

on
ve

x 
hu

ll

Random exploration
Target-based exploration
60,000 random babbles

3717



We combine the 10 independent speech fragments (i.e., the 
5 based on learned targets, plus 5 based on random ones) and 
cluster the extracted 2.5 million MFCC-vectors into k clusters 
using k-means clustering. The cluster centers provide an 
approximation of the acoustic diversity of the common acoustic 
space. After the clusters have been created in the shared 
acoustic space, we classify the MFCC-vectors of the individual 
runs in the cluster centers. Finally, we calculate the entropy of 
the distribution of a fragments’s MFCC-vectors over the 
clusters. A high entropy indicates that the output speech is 
evenly distributed to all cluster centers, and thus evenly 
occupies the acoustic space that was reached by the babbling 
runs with high diversity. Low entropy values mean that the 
output is unevenly distributed, and some parts of the acoustic 
space have relatively more activity than others.  

We run the k-means clustering algorithm 50 times for three 
different values of k (50, 100, and 200), as to estimate and 
compensate the stochastic effects of the k-means clustering on 
our measure of diversity. Figure 2 shows the entropy 
distribution for the 10 independent 20-minute fragments of 
babbling: the five fragments based on the speech targets learned 
through our exploration algorithm are more diverse than the 
five fragments randomly selecting articulatory targets. Figure 3 
shows the extent of the vowel spaces of the speech fragments, 
where formant frequencies are extracted using Praat [28] 
through the Python library Parselmouth [29]. It can be seen that 
the learning algorithm finds a wider variety of vowel targets. 

Figure 3. All F1-F2 values and their convex hulls, extracted 
from the vowels of the final speech fragments.  
Averaging the entropy-based measure over all 50 clusterings 
for each independent speech fragment, using the learned targets 
results in a significantly higher entropy than babbling based on 
randomly selected articulatory targets (independent samples t-
test). This holds for all numbers of clusters k we used to 
evaluate the entropy, 50 (p < 0.001), 100 (p < 0.001), and 200 
(p = 0.011). 

The entropy-based measure used does not tell us about the 
actual quality of the synthesized sounds, nor how much they 
resemble sounds in human languages, but only how diversely 
they appear in the acoustic domain. Subjectively listening to the 
final generated speech (available in [30]) reveals that 
generating speech based on the learned targets produces more 
closures, plosives and nasal sounds, and that the general variety 
of speech sounds appears larger. In the future, evaluation of the 
discovered articulations could include using automatic speech 
recognition to classify sounds automatically in phonemes found 
in human languages. 

Such automatic vocal exploration, without biasing it with 
knowledge of human phoneme recognition or pre-defined 
phonetic gestures or constraints, is of importance for example 
in research of emergence of sound systems. In such research it 
is important to let the natural dynamics of the population refine 
the sound systems to an optimal direction, rather than imposing 
constraints manually, often based on our knowledge of the 
already emerged phonetic systems of our own. 

5. Conclusions 
In this study we have shown that an incremental articulatory 
exploration algorithm can explore the possible acoustic space 
efficiently, and discover a number of articulatory targets, whose 
acoustic outputs are diverse in the acoustic domain. Consonant 
gestures, affecting only a subset of the total number of 
articulatory parameters, are superposed to a vowel context 
showing the coarticulatory effect that is known from human 
speech, and important for good quality speech synthesis [25]. 
The clustering of consonant gestures is performed so that the 
minimum shared set of articulatory parameters are used to 
produce the desired acoustic outcome. An entropy-based 
diversity measure, as well as the increase of the volume of the 
range of created acoustic outcomes show that the algorithm 
explores the articulatory-acoustic domain faster than an 
algorithm based on purely random selection of articulatory 
targets. 
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Figure 2. The clustered MFCC-vectors of the 5 runs of 
random speech based on the learned targets (L, blue) are 
more diverse than the 5 runs based on randomly selected 

targets (R, orange). The point swarms illustrate the effect of 
the variance due to the k-means clustering.The green line at 

the top indicates the maximum amount of entropy for k 
clusters (log 2 k bits), and is also represented on the right y-
axis, rescaling the entropy relative to this maximal entropy. 

The median (dashed horizontal line) and first and third 
quartiles (shaded area) of all learned vs. random runs’ data 

points (blue vs. orange) also show the overall increase in 
diversity achieved by the learning algorithm. 
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