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Abstract
Transformers have demonstrated state-of-the-art performance
on many tasks in natural language processing and speech pro-
cessing. One of the key components in Transformers is self-
attention, which attends to the whole input sequence at every
layer. However, the computational and memory cost of self-
attention is square of the input sequence length, which is a ma-
jor concern in automatic speech recognition (ASR) where the
input sequence can be very long. In this paper, we propose
to use a technique called adaptive span self-attention for ASR
tasks, which is originally proposed for language modeling. Our
method enables the network to learn an appropriate size and po-
sition of the window for each layer and head, and our newly in-
troduced scheme can further control the window size depending
on the future and past contexts. Thus, it can save both computa-
tional complexity and memory size from the square order of the
input length to the adaptive linear order. We show the effective-
ness of the proposed method by using several ASR tasks, and
the proposed adaptive span methods consistently improved the
performance from the conventional fixed span methods.
Index Terms: Self-attention, adaptive, Transformer, end-to-
end, speech recognition,

1. Introduction
Deep neural networks (DNN) have significantly improved the
performance of automatic speech recognition (ASR) in the
last decade [1] bridging the performance gap between humans
and machines [2–4]. Furthermore, the end-to-end (E2E) ASR
paradigm has become quite popular because of its simplicity
[5–7] in recent years. One type of successful E2E ASR model is
based on the encoder-decoder framework [7], where the encoder
maps the acoustic features to some hidden representation and
the attention-based decoder generates the output tokens one at
a time. The encoders and decoders typically use the long short-
term memory recurrent neural networks (LSTM-RNNs) [7–9]
because LSTM can learn long term sequential information.

Transformer is a new sequence modeling architecture pro-
posed for neural machine translation [10] and it achieved signif-
icant performance improvement over LSTM-RNNs based E2E
models. It has been explored in a lot of other natural language
processing tasks, such as language modeling [11, 12]. Sub-
sequently, Transformer is also proven to be effective for E2E
ASR [13,14] as well. One reason for the success of Transformer
models is that it can capture the long term sequence dependency
better than LSTMs. Because at each time step, the self-attention
layer computes the weighted sum over the whole input sequence
given the attention weights. In addition, unlike the LSTMs
which use recurrent connections for capturing sequential infor-
mation, Transformers can process the input sequence in parallel

via self-attention, which enables efficient GPU training.
Even though Transformer has a lot of advantages, it has

serious computational and memory cost issues. In the compu-
tation of self-attention, the input sequence of length T is first
mapped to the multiple key (K), query (Q) and value (V) se-
quences of the same length T . Then, the similarity scores are
computed between every key and query state. And the scores
are normalized with Softmax to get the attention weights. After-
wards, the weighted summation computation is performed with
the attention weights and the V sequence. The corresponding
computational and memory complexities are bothO(T 2) in the
above self-attention process. This cost becomes a barrier to ap-
ply Transformer in many tasks where the input sequence length
can be inevitably long as was mentioned in [15–24]. The major-
ity of the research direction to avoid the cost is to compute the
self-attention at each time step only on a fixed span of the subset
from the whole input sequence [16–19], e.g., [19] used a local
self-attention of fixed size for masking-based speech enhance-
ment. In [21], a more flexible method called the adaptive span
was proposed where the sizes of attention span at every layer are
parameters learnt during training. In [22], a method called the
Hashing attention was proposed to compute the self-attention
only on the similar key and query states.

Among these techniques, in this paper, we propose to use
the adaptive span technique [21] to E2E ASR Transformer. The
adaptive span was originally proposed for language modeling to
determine the proper span size of each head and layer. However,
we found that the adaptive span is instinctively appropriate for
ASR applications because the features that are temporally close
to each other usually have a higher correlation in ASR, unlike
language modeling or other common natural language tasks.
One of the problems when applying it to ASR Transformer is
that the original adaptive span used for language modeling only
considers the history context, while in ASR, it is important to
flexibly control the history and future context spans separately.
Thus, we newly introduce another learning parameter, span ra-
tio, to decide the relative position of the span window. Finally,
we examine the proposed method on several E2E ASR tasks, in-
cluding the common single-speaker and the multi-speaker cor-
pora. The proposed method was superior/comparable to the
conventional methods including whole sequence and fixed span
methods, while reducing both computational and memory com-
plexity theoretically. We also experimentally validated the re-
duction in the time complexity.

2. Adaptive Self-attention
This section first describes a standard self-attention in the Trans-
former layers, which is computed over the whole input se-
quence. Then, the proposed adaptive self-attention is described,
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Figure 1: An example of the attention patterns at four heads
of the first encoder layer in the whole sequence self-attention
model. The horizontal axis and vertical axis represent the input
and output, respectively. It shows that the two attention heads
shown on the right tend to attend to the context frames over long
spans, while the two heads shown on the left tend to attend to
the context frames locally with a short span.

which adaptively learns the span size and span ratio.

2.1. Whole Sequence Self-Attention in Transformer

The self-attention is composed of scaled dot product attention
which receives three state sequences, namely the key (K), query
(Q), and value (V). K,Q, and V usually have the same dimen-
sion as T×datt, where T is the sequence length. To compute the
attention weights A, we first compute the normalized dot prod-
uct between key K and query Q, and apply a Softmax function,
as follows:

score(Q,K) =
QK>√
datt
∈ RT×T , (1)

A = (at,i) = Softmax(score(Q,K)),

at,i =
exp(scoret,i)∑
j exp(scoret,j)

, (2)

where the term
√
datt is used for scaling the dot product to avoid

a very large magnitude because of large dimension datt. The
term scoret,i in Eq. (2) represents the similarity score between
the query vector at t-th frame of Q and the key vector at i-
th frame of K. The output of the scaled dot product attention
block is computed by multiplying the attention weights A in
Eq. (2) with the value V as:

Attention(Q,K,V) = Softmax (score(Q,K))V. (3)

This is the basic calculation of the attention network with the
Q,K, V representation.

Multi-head attention (MHA) is often used in the self-
attention of Transformer to capture the information from dif-
ferent representation subspaces. Linear projections are used to
produce the variants of Q,K,V depending on head h. After
the attention computation in Eq. (3) for each h, we obtain the

context vector Hh, and the final output is computed by using
the concatenated context vectors across all heads as:

Hh = Attention(QWq
h,KWk

h,VWv
h), (4)

MHA(Q,K,V) = Concat([Hh]
dhead

h=1)W
head, (5)

where dhead is the number of attention heads, and Whead ∈
R(dheaddatt)×datt

, and Wq
h,W

k
h,W

v
h ∈ Rd

att×datt
are projec-

tion weight matrices. Self-attention is the above multi-head
attention layer with the scaled dot product attention whose
Q,K, and V are the same, i.e., K = Q = V , X, and
MHA(X,X,X).

2.2. Fixed Span Self-Attention

The computational complexity of the Attention(·) in Eq. (3) is
the order of the square of the sequence length, i.e., O(T 2) and
the memory used to store the attention weights is also the square
of the sequence length, T 2. This limits the use of Transformer
when the input length is very large, which normally happens
in the speech feature sequence. One straightforward approach
to alleviate this problem is to limit the span size as a relatively
small valueW , so that the self-attention is performed on a local
segment [19]. Then the computation in Eq. (3) is adjusted as:

Attention(Q,K,V) = Softmax
(
score(Q,K′)

)
V′, (6)

where the corresponding keys and values at each time step t are
K′ = Kt−Wl:t+Wr and V′ = Vt−Wl:t+Wr , respectively. Wl

and Wr denotes the left and right context window, respectively.
With W = Wl + Wr , the computational and memory costs
potentially become a linear order, i.e., O(TW ). The costs can
be considerably reduced if we set W � T .

However, the behavior of each head at every layer is not
necessarily the same, and using a single span size hyperparam-
eter W (or Wl and Wr) for all the self-attention computations
is not appropriate. As shown in Figure 1, the spans of the dom-
inant attention values at each head are quite different. Some
heads focus on the long sequence information, while others use
only local information. Such trends can be also observed at each
layer. Therefore, this observation shows that we can reduce the
span size at certain heads and layers.

2.3. Adaptive Self-attention

Adaptive span. In this part, we first introduce the method
called the adaptive span. Inspired from [21], the motivation
is to learn the appropriate span size at each self-attention head
and layer during training. For each attention head, an adap-
tive span Wθ ∈ [0,W ] is employed to control the proper span
size that allows for the information propagation. The maximum
span size W is set in advance. To apply the adaptive span, a
soft mask m(t, i) ∈ [0, 1] is used in computing the attention
weights. Then, Eq. (2) is reformulated as:

at,i =
m(t, i) exp(scoret,i)∑
jm(t, j) exp(scoret,j)

, (7)

m(t, i) = min

{
max

{
1

R
(R+Wθ − abs(t− i)), 0

}
, 1

}
,

(8)

where abs(·) is the absolute value and R is hyperparameter
for buffer. To regularize the adaptive span size, we use a
penalty function, a `1 loss by aggregating all the span sizes
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Table 1: Time complexity of each attention methods. We denote
B as batch size, H as number of heads, T as sequence length,
W /Wθ(h, s) as fixed and adaptive span sizes for each head h
and layer s, respectively.

Model Time
whole-seq O(BHT 2)
fixed-span O(BHTW )

adaptive-span O(BHT max(Wθ(h, s)))

Lspan =
∑
h,sWθ(h, s) where h and s are head and layer in-

dexes, respectively. Note that the same span sizes on the left
and right context are used for all the heads at every layer based
on this formulation. In Table 1, we summarize the time com-
plexity for three different attention methods mentioned above,
which shows that span attention avoids the square of sequence
length with a maximum span size term instead.

Adaptive ratio. This paper proposes to extend the previ-
ous adaptive span by introducing additional learning parameter,
called the adaptive ratio γ, to adaptively control the relative size
between the left and right context frames in the encoder. This
corresponds to adaptively determine Wl and Wr introduced in
Section 2.2 for each attention head. This extension is quite suit-
able for ASR since the importance of the context information is
asymmetric in the ASR case, and the previous (history) contexts
have more important information in general [25]. If we denote
the proportion of the left side span as γ, then the corresponding
size W l

θ = Wθ × γ. Accordingly, the right side span in the
future is W r

θ =Wθ × (1− γ).
Similar to the regularization of the span size, in order to

regularize the span ratio term, we use another penalty function
in terms of the span ratio to control the trade-off between the
left and right span. In our initial experiments, we observed that
the left span is more important, as we expected. In order to en-
courage the network to use more history information, we limit
the γ by setting the loss as Lratio = 1−Mean({γ(h, s)}h,s)

During training, we minimize the total loss function com-
prised of three terms:

L = LASR + λ(Lspan + Lratio), (9)

where λ > 0 is a regularization hyperparameter. In this experi-
ment, we used the value 1e− 7.

3. Experiments
3.1. Setup

To evaluate the effectiveness of the adaptive span and ratio,
we conducted experiments on several ASR corpus, includ-
ing AIShell [26], Switchboard [27] and TED-LIUM2 [28] for
single-speaker ASR tasks and WSJ-2mix [29] for multi-speaker
ASR task. Our implementation was based on ESPnet [30] 1.

As a benchmark, we first trained the normal Transformer
with whole-sequence self-attention model on each of these
datasets. We followed the ESPnet Transformer recipe to set
the hyper-parameters of the model. The encoder of the speech
recognition model contains a two-layer CNN and twelve layers
self-attention network (SAN) blocks. The decoder contains six
layers of self-attention network (SAN) blocks. The parameters
of the SAN are: dhead = 4, datt = 256, dff = 2048 for the num-
ber of heads, dimension of attention (att) and dimension of feed
forward (ff) layer, as introduced in Section 2.1. We temporarily
set the hyperparameter R = 2 that is mentioned in Section 2.3

1We plan to make our implementation open source for public use.

3.2. Results on AIShell

In this part, we present the performance on the AIShell cor-
pus, an open-source Chinese Mandarin speech corpus, which
is shown in Table 2. The SAN with whole-sequence model
achieves state-of-the-art character error rates (CERs), 6.0% and
6.6% on the development and evaluation set, respectively. Then,
we explore the performance of the shorter context. In the SAN
with the fixed span, if the span size in the encoder is set to be 50
and that in the decoder to be 25, the CERs are 6.2% and 6.9%,
which is a slight degradation. Here, the span sizes are the same
for all the heads at every layer. If we reduce the span sizes to
be [enc = 29, dec = 14]2, we could maintain the CERs but can
reduce the memory and computational cost.

Next we trained the SAN with adaptive span size. We set
the maximum span size to be [50, 25] as in the experiment of
fixed span and the span ratio γ = 0.7 3. The character er-
ror rates are 6.2% and 6.9% on the development and evaluation
sets respectively, which is almost similar to the fixed span one.
When we checked the estimated average span size over all the
heads and layers in the encoder, it is less than 50, around 29. If
we further apply the adaptive span ratio, the CERs became bet-
ter, achieving 6.0% and 6.7%, which are very close to the per-
formance of whole sequence SAN, but we could significantly
save the computational cost.

Note that the following experiments on the other cor-
pora used the same hyperparameters in the adaptive/fixed span
SANs.

Table 2: Performance comparison between the whole sequence
SAN, fixed-span SAN and the adaptive-span SAN. Character er-
ror rates (CERs) [%] on the AIShell corpus.

Model Max-span Span-ratio dev eval

Kaldi chain TDNN [25, 31] [7,3] n/a n/a 7.4
ESPnet Transformer [14] inf n/a 6.0 6.7

Whole-seq (ours) inf n/a 6.0 6.6

Fixed-span [29, 14] [0.5:0.5] 6.2 7.0
Fixed-span [50, 25] [0.5:0.5] 6.2 6.9

Adaptive-span [50, 25] [0.7:0.3] 6.2 6.9
Adaptive-span [50, 25] adaptive 6.0 6.7

3.3. Results on Switchboard and TED-LIUM2

The performance on both Switchboard and TED-LIUM2 in Ta-
ble 3 show quite similar trends to the AIShell result in the previ-
ous section. First, the whole sequence SAN achieves reasonable
performance. The fixed-span with span sizes [29, 14] results in
degradation. If we use the adaptive span SAN, the performance
was significantly improved from that of the fixed span SAN, and
became close to that of the whole sequence SAN. Notably, half
of the adaptive span results with the fixed span-ratio even out-
performed the whole sequence SAN results, although we need
further hyperparameter tuning for the Switchboard experiment
to show the effectiveness of the adaptive span ratio.

3.4. Results on WSJ-2mix

In this part, we investigate the effectiveness of the win-
dowed SAN with the standard multi-speaker speech recognition
dataset, WSJ-2mix [32]. We used an end-to-end multi-speaker

2These numbers come from the average span size obtained by the
adaptive span experiments to make the fair comparisons between adap-
tive and fixed span methods.

3For fixed span SAN, γ = 0.5 works better than γ = 0.7 but for
adaptive span SAN, it is the opposite.
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Table 3: Performance comparison between the whole sequence SAN, fixed-span SAN and the adaptive-span SAN. Word error rates
(WERs) [%] on the Switchboard and TED-LIUM2 corpus.

Model Max-span Span-ratio
SWBD TED-LIUM2

train dev eval2000 rt03 dev test
callhm ctm swbd ctm fsh swbd

Whole-seq inf n/a 11.9 17.2 12.8 8.3 14.8 11.2 18.1 11.6 10.3

Fixed-span [29, 14] [0.5:0.5] 11.7 17.3 13.0 8.7 15.3 11.8 18.5 12.1 11.1
Adaptive-span [50, 25] [0.7:0.3] 11.5 16.5 12.5 8.4 14.8 11.3 18.0 11.7 11.0
Adaptive-span [50, 25] adaptive 11.7 16.9 12.7 8.4 14.9 11.6 18.1 11.6 11.0

Table 4: An example of average span sizes in the encoder of Adaptive-span SAN trained on WSJ-2mix dataset. SDsi represents the i-th
layer for s-th speaker differentiating encoder. Ri represents the i-th layer for speech recognition encoder.

Layer SD1
1 SD1

2 SD1
3 SD1

4 SD2
1 SD2

2 SD2
3 SD2

4 R1 R2 R3 R4 R5 R6 R7 R8

Average 53.1 72.3 76.0 76.0 57.9 72.1 67.5 67.5 58.2 58.2 46.8 39.5 45.4 48.8 41.0 58.0

Table 5: Performance comparison between the whole sequence
SAN, fixed-span SAN and the adaptive-span SAN. Word error
rates (WERs) [%] on the WSJ-2mix corpus.

Model Max-span Span-ratio dev eval

Whole-seq inf n/a 15.4 11.4

Fixed-span [29, 14] [0.5:0.5] 24.6 21.7
Fixed-span [75, 25] [0.5:0.5] 18.8 14.1

Adaptive-span [75, 25] adaptive 18.5 13.7

ASR system with Transformer [19], which has special speaker-
differentiating SAN layers to perform speech separation inside
the network. Note that multi-speaker speech recognition is more
challenging because the implicit speech separation in some hid-
den representation requires more global context information re-
lated to speaker characteristics in general. Thus, this task is
more sensitive for the use of the context information, and quite
suitable to test our windowed SAN techniques,

Table 5 shows that the whole sequence SAN is distinctly
better than the other models, as we expected. This shows the
importance of global context for speech separation. The im-
portance of the global context is also partly supported by the
fixed span model results with the small and large span sizes, as
increasing the span sizes to be [75, 25] could recover the perfor-
mance degradation to some extent. If we use the adaptive span
SAN with the adaptive ratio, it can further reduce the WERs,
while also reducing the average span size. In Table 4, we show
the average of trained span size at every layer in the encoder. In-
terestingly, the average span size learned from the adaptive span
SAN was relatively large in the speaker-differentiating (SD) en-
coder layers, which perform speech separation, than that of the
normal SAN layers (R). This result indicates that the proposed
adaptive span SAN can adaptively change the span size depend-
ing on the network roles (i.e., separation and recognition roles
in this experiment).

3.5. Computational efficiency

One of the strong benefits of the windowed attention is to reduce
the computational cost during inference, thanks to the adaptive
span size and ratio, especially for the long input sequences. We
present the average computation time of the self attention unit
for the whole sequence self-attention and the self-attention with
maximum span size of 50 in Figure 2 by using the TED-LIUM2

Figure 2: Average computation time of the self attention unit
with the whole sequence and the adaptive span methods over
different lengths of speech sequences.

test examples. The proposed adaptive span self-attention can
significantly save the time compared to the whole sequence self-
attention for long sequences as in this case “W � T ” like ex-
plained in Section 2.2. For example, given a sequence of length
997 after subsampling (almost 40 seconds), self-attention with
span saves more than 50% of the computation time.

4. Conclusions
In this paper, we applied the windowed self-attention to the
E2E ASR tasks, as an alternative to the whole sequence self-
attention. From the observation of attention patterns in normal
SAN based ASR system, it is not necessary to attend to the
whole sequence in the self-attention computation, which wastes
the computation. In order to choose an appropriate span size,
we introduced the adaptive span attention technique. We also
proposed to adjust the span ratio using another learning param-
eter. The results show that span attention generally has small
impact on the performance in single-speaker speech recogni-
tion tasks, which indicates that it does not require the whole se-
quence in the self-attention computation. For application, it is
one possible direction to use the span size and ratio parameters
after training as a guide in designing other model architectures,
such as the kernel size of a convolutional neural network. In the
future, we will focus on online/streaming ASR based on this
adaptive span technique. To do that, we will apply the adaptive
span technique in the source-target attention to make an entire
network adaptive [33–36].
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