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Abstract

Auto-regressive sequence-to-sequence models with attention
mechanisms have achieved state-of-the-art performance in var-
ious tasks including speech synthesis. Training these models
can be difficult. The standard approach guides a model with
the reference output history during training. However during
synthesis the generated output history must be used. This mis-
match can impact performance. Several approaches have been
proposed to handle this, normally by selectively using the gen-
erated output history. To make training stable, these approaches
often require a heuristic schedule or an auxiliary classifier. This
paper introduces attention forcing, which guides the model with
the generated output history and reference attention. This ap-
proach reduces the training-evaluation mismatch without the
need for a schedule or a classifier. Additionally, for standard
training approaches, the frame rate is often reduced to prevent
models from copying the output history. As attention forcing
does not feed the reference output history to the model, it allows
using a higher frame rate, which improves the speech quality.
Finally, attention forcing allows the model to generate output
sequences aligned with the references, which is important for
some down-stream tasks such as training neural vocoders. Ex-
periments show that attention forcing allows doubling the frame
rate, and yields significant gain in speech quality.
Index Terms: sequence-to-sequence model, attention mecha-
nism, training, speech synthesis

1. Introduction
Auto-regressive sequence-to-sequence (seq2seq) models with
attention mechanisms are used in a variety of areas including
Neural Machine Translation (NMT) [1, 2] and speech synthe-
sis [3, 4], also known as Text-To-Speech (TTS). These models
excel at connecting sequences of different length, but can be
difficult to train. A standard approach is teacher forcing, which
guides a model with reference output history during training.
This makes the model unlikely to recover from its mistakes dur-
ing inference, where the reference output is replaced by gener-
ated output. One alternative is to train the model in free run-
ning mode, where the model is guided by generated output his-
tory. This approach often struggles to converge, especially for
attention-based models, which need to infer the correct output
and align it with the input at the same time.

Several approaches are introduced to tackle the above prob-
lem, namely scheduled sampling [5] and professor forcing
[6]. Scheduled sampling randomly decides, for each time step,
whether the reference or generated output token is added to the
output history. The probability of choosing the reference out-
put token decays with a heuristic schedule. Professor forcing
views the seq2seq model as a generator. During training, the
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generator operates in both teacher forcing mode and free run-
ning mode. In teacher forcing mode, it tries to maximize the
standard likelihood. In free running mode, it tries to fool a dis-
criminator, which is trained to tell the mode of the generator.
To make training stable, these approaches require a well tuned
schedule or discriminator, and recent research [7, 8] shows that
their application to TTS can be challenging.

This paper introduces attention forcing, which guides the
model with generated output history and reference attention.
This approach makes training stable by decoupling the learn-
ing of the output and the alignment. There is no need for a
schedule or a discriminator. Additionally, for standard training
approaches, the frame rate is often reduced to prevent models
from copying the output history. As attention forcing does not
feed the reference output history to the model, it allows a higher
frame rate, which can improve performance. Finally, attention
forcing allows the model to generate outputs aligned with the
references, which is important for some down-stream tasks such
as training neural vocoders. Experiments show that attention
forcing allows doubling the frame rate, and yields significant
gain in expressiveness and overall speech quality.

2. Sequence-to-sequence generation
Sequence-to-sequence generation can be defined as mapping an
input sequence x1:L to an output sequence y1:T . From a proba-
bilistic perspective, a model θ estimates the distribution of y1:T
given x1:L, typically as a product of conditional distributions:
p(y1:T |x1:L;θ) =

∏T
t=1 p(yt|y1:t−1,x1:L;θ).

Ideally, the model is trained through minimizing the KL-
divergence between the true distribution p(y1:T |x1:L) and the
estimated distribution. In practice, this is approximated by min-
imizing the Negative Log-Likelihood (NLL) over some training
data {y(n)

1:T ,x
(n)
1:L}

N
1 , sampled from the true distribution:

L(θ) = E
x1:L ∼ p(x1:L)

KL
(
p(y1:T |x1:L)||p(y1:T |x1:L;θ)

)
(1)

∝ −
∑N
n=1 log p(y

(n)
1:T |x

(n)
1:L;θ) (2)

L(θ) denotes the loss. During inference, given an input x∗
1:L,

the output can be obtained through searching for the most prob-
able sequence from p(y1:T |x∗

1:L;θ). The exact search is expen-
sive and is often approximated by greedy search for continuous
output, or beam search for discrete output [5].

2.1. Attention-based seq2seq model

Attention mechanisms [9, 10] are commonly used to connect
sequences of different length. This paper focuses on attention-
based encoder-decoder models. For these models, the probabil-
ity p(yt|y1:t−1,x1:L;θ) is estimated as:

p(yt|y1:t−1,x1:L;θ) ≈ p(yt|y1:t−1,αt,x1:L;θ)

≈ p(yt|st, ct;θy)
(3)
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Figure 1: Illustration of an attention-based encoder-decoder

θ = {θy,θs,θc}. αt is an alignment vector (a set of atten-
tion weights). st is a state vector representing the output history
y1:t−1, and ct is a context vector summarizing x1:L for the pre-
diction of yt. Figure 1 and the following equations give a more
detailed illustration of how αt, st and ct can be computed:

h1:L = f(x1:L;θh) (4)
st = f(st−1,yt−1;θs) (5)
αt = f(st,h1:L;θα) (6)

ct =
∑L
l=1 αt,lhl (7)

ŷt ∼ p(yt|st, ct;θy) (8)

First the encoder maps x1:L to an encoding sequence h1:L. For
each decoder time step, st is updated with yt−1. Based on
h1:L and st, the attention mechanism computes αt, and then
ct. Finally, the decoder estimates a distribution based on st
and ct, and optionally generates an output token ŷt. Note that
while illustrated with this form of attention, attention forcing is
not limited to it.

2.2. Training approaches

As shown in equations 1 and 2, minimizing the KL-divergence
can be approximated by minimizing the NLL. This motivates
teacher forcing, where the reference output history is given to
the model, and the loss can be written as:

L(T)
y (θ) = −

∑N
n=1

∑T
t=1 log p(y

(n)
t |y

(n)
1:t−1,x

(n)
1:L;θ) (9)

This approach yields the correct model (zero KL-divergence)
if the following assumptions hold: 1) the model is powerful
enough ; 2) the model is optimized correctly; 3) there is enough
training data to approximate the expectation shown in equation
1. However, these assumptions are often not true, hence the
model is prone to mistakes that can accumulate across time.

In practice, the model is often assessed by some distance
D between the reference y1:T and the prediction ŷ1:T . This
motivates Minimun Bayes Risk training, which minimizes the
expectation of D(y1:T , ŷ1:T ). This approach allows directly
optimizingD [11, 12]. D does not need to be differentiable, and
y1:T and ŷ1:T do not need to be aligned. However, for many
tasks such as TTS, there is no gold-standard distance metric,
and the alignment can be essential.

Although defined for sequences, D is usually computed at
sub-sequence level, e.g. BLEU score for NMT and Lp dis-
tance for TTS. So training the model to predict the reference
output, based on erroneous output history, indirectly reduces
the Bayes risk. One example is to train the model in free
running mode, where the generated output history is given to
the model, and the probability term in equation 9 becomes
p(y

(n)
t |ŷ

(n)
1:t−1,x

(n)
1:L;θ). This approach often struggles to con-

verge, and several approaches are proposed to tackle this prob-
lem, namely scheduled sampling and professor forcing.

Scheduled sampling [5] randomly decides whether the
reference or generated output is added to the history. For

this approach, the probability term in equation 9 becomes
p(y

(n)
t |ỹ

(n)
1:t−1,x

(n)
1:L;θ); ỹt = yt with probability ε, and ŷt

otherwise. ε gradually decays from 1 to 0 with a heuristic sched-
ule. This approach improves the results in many cases [5], but
sometimes lead to worse results [5, 13, 7]. One concern is the
decay schedule not fitting the learning pace of the model, an-
other is that ỹ1:t−1 is usually an inconsistent mixture of the
reference and generated output. Professor forcing [6] is an al-
ternative. During training, the model outputs two sequences
for each input sequence, respectively in teacher forcing mode
and free running mode1. The output and/or some hidden se-
quences are used to train a discriminator, which estimates the
probability that a group of sequences is generated in teacher
forcing mode. For the generator, there are two training objec-
tives: 1) the standard NLL loss; 2) to fool the discriminator
in free running mode, and optionally in teacher forcing mode.
This approach regularizes the output and/or some hidden layers,
encouraging them to behave as if in teacher forcing mode, at the
expense of tuning the discriminator.

In terms of application to TTS, recent research has inves-
tigated scheduled sampling and variations of professor forcing.
[7] and [8] both regularize the decoder states. As there is no
standard distance metric, [7] designs a discriminator and uses
the hinge version of adversarial loss. [8] uses L1 distance. [8]
finds scheduled sampling beneficial, while [7] finds the oppo-
site, showing that the schedule can be hard to tune.

To our knowledge, teacher forcing is the most standard
training approach for TTS, especially when neural vocoders
are used. To train neural vocoders, it is beneficial to let the
seq2seq model generate sequences aligned with the references,
and teacher forcing is the standard option. Section 4 will elab-
orate on this issue. To make teacher forcing perform better, the
frame rate is often reduced, even though it introduces noise to
the waveform. The reason is as follows. Speech is inherently
continuous, and the output sequences have such high frame rate
that adjacent frames are similar. Hence teacher forcing is prone
to local optima where the model tends to copy the output his-
tory. Reducing frame rate alleviates this problem. Note that this
is required by the training approach, not the model.

3. Attention forcing
For attention-based seq2seq generation, we propose attention
forcing. The basic idea is to use reference attention and gener-
ated output to guide the model during training. In attention forc-
ing mode, the model does not need to learn to simultaneously
infer the output and align it with the input. As the reference
alignment is known, the decoder can focus on inferring the out-
put, and the attention mechanism can focus on generating the
correct alignment.

Let θ̂ denote the model trained with attention forcing, and
later used for inference. In attention forcing mode, the probabil-
ity p(yt|y1:t−1,x1:L; θ̂) is estimated with the generated output
ŷ1:t−1 and the reference alignment αt, so equation 3 becomes:

p(yt|y1:t−1,x1:L; θ̂) ≈ p(yt|ŷ1:t−1,αt,x1:L; θ̂)

≈ p(yt|ŝt, ĉt; θ̂y)
(10)

ŝt and ĉt denote the state vector and context vector generated
by θ̂. Details of attention forcing can be illustrated by figure 2,

1The term ”teacher forcing”, as well as ”attention forcing”, can refer
to either an operation mode, or the approach to train a model in that
operation mode. An operation mode can be used not only to train a
model, but also to generate from it.
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Figure 2: Illustration of attention forcing

as well as the following equations:

h1:L = f(x1:L;θh) ĥ1:L = f(x1:L; θ̂h) (11)

st = f(st−1,yt−1;θs) ŝt = f(ŝt−1, ŷt−1; θ̂s) (12)

αt = f(st,h1:L;θα) α̂t = f(ŝt, ĥ1:L; θ̂α) (13)

ĉt =
∑L
l=1 αt,lĥl (14)

ŷt ∼ p(yt|ŝt, ĉt; θ̂y) (15)

The right side of the equations 11 to 13, as well as equations
14 and 15, show how the attention forcing model θ̂ operates. ŝt
is computed with ŷ1:t−1. While an alignment α̂t is generated
by θ̂, it is not used by the decoder, because ĉt is computed with
the reference alignment αt. In most cases, αt is not available.
One option of obtaining it is shown by the left side of equations
11 to 13: to generate αt from a teacher forcing model θ. θ is
trained in teacher forcing mode, as shown in equation 9, and
generates αt, also in teacher forcing mode.

During training, there are two objectives: to infer the refer-
ence output and to imitate the reference alignment. The respec-
tive loss functions are:

L(A)
y (θ̂) = −∑N

n=1

∑T
t=1 log p(y

(n)
t |ŷ(n)

<t ,α
(n)
t ,x(n)

1:L
; θ̂) (16)

L(A)
α (θ̂) =

∑N
n=1

∑T
t=1KL(α

(n)
t ||α̂

(n)
t ) (17)

As an alignment corresponds to a categorical distribution, KL-
divergence is a natural difference metric. The two losses can
be jointly optimized as L(A)

y,α = L(A)
y + γL(A)

α . γ is a scaling
factor that should be set according to the dynamic range of the
two losses. Our default optimization option is as follows. θ is
trained in teacher forcing mode, and then fixed to generate the
reference attention. θ̂ is trained with the joint loss L(A)

y,α. This
option makes training more stable, most probably because the
reference attention is the same in each epoch. An alternative is
to train θ and θ̂ simultaneously to save time. Another is to tie
(parts of) θ and θ̂ to save memory.

At inference stage, the attention forcing model operates in
free running mode. In this case, equation 14 becomes ĉt =∑L
l=1 α̂t,lĥl. The decoder is guided by α̂t, instead of αt.

Intuitively, attention forcing, as well as scheduled sampling
and professor forcing, is in the middle of teacher forcing and
free running. An advantage of attention forcing is that it does
not require a schedule or a discriminator, which can be difficult
to tune. In terms of regularization, attention forcing is similar
to professor forcing. The output layer of the attention mecha-
nism is regularized, and the KL-divergence is a well-established
difference metric. [7] and [8] also perform hidden layer regular-
ization, and both regularize the decoder states, for which there
is not a natural difference metric. [7] introduces a specific dis-
criminator; [8] experiments with L1 loss, and one concern is the
implicit assumption that the states are in L1 space.

The effect of regularization on attention mechanisms has
been studied in previous work [14, 15, 16], where alternative
approaches of obtaining reference attention are introduced. [16]
and [14] require collecting extra data for reference attention,
and [15] uses a statistical machine translation model to estimate
them. In contrast, we propose to generate the reference attention
with a teacher forcing model, which can be trained simultane-
ously with the attention forcing model.

Our previous work [17] shows that it can be challenging
to apply attention forcing to seq2seq tasks where the attention
is complicated, e.g. non-monotonic attention in NMT. Meth-
ods tacking this issue have been investigated and will be pre-
sented in the future. Another challenge of attention forcing is
that when applying it to models without an attention mecha-
nism, attention needs to be defined first. For convolutional neu-
ral networks, for example, attention maps can be defined based
on the activation or gradient [18]. Some recent work on TTS
[19, 20, 21, 22] uses a duration model instead of attention. In
this case, one-hot alignment vectors can be defined according to
the duration of input tokens.

4. Application to speech synthesis
Attention forcing has a feature that is desirable for many tasks
such as TTS: when the reference alignment is given, the gener-
ated output will be aligned with the reference. The goal for TTS
is to map characters x1:L to waveform w1:J . The direct map-
ping is difficult, largely due to the dramatic difference in length.
In the state-of-the-art TTS pipeline, a frame-level model θmaps
x1:L to vocoder features y1:T , and a waveform-level model φ
maps y1:T to w1:J [3]. θ is an attention-based seq2seq model
that handles alignment [13, 3]; φ is a neural vocoder, which
does not deal with alignment [23, 24, 25, 26].

The training dataset {w(n)
1:J ,x

(n)
1:L}

N
1 usually contains pairs

of waveformw(n)
1:J and text x(n)

1:L. To simplify notations, the su-
perscript (n) is omitted by default in the following discussion.
For eachw1:J , y1:T can be extracted. The frame-level model θ
is trained with {x1:L,y1:T }. The waveform-level model φ can
be trained with {y1:T ,w1:J}, or {ŷ1:T ,w1:J}, where ŷ1:T is
generated by θ. Training with ŷ1:T allows φ to fix some mis-
takes made by θ, but this is only possible when ŷ1:T is aligned
with w1:J . To ensure the alignment, the standard approach is
to train θ in teacher forcing mode, and then generate from it in
the same mode. This paper proposes an alternative approach:
to use attention forcing instead of teacher forcing. As analyzed
in section 3, training θ with attention forcing improves its per-
formance. Furthermore, in attention forcing mode, each output
ŷt is predicted based on ŷ1:t−1 instead of y1:t−1, hence ŷ1:T
is more likely than in teacher forcing mode to contain errors
that θ makes at inference stage. Note that if θ is trained with
scheduled sampling or professor forcing, it is often not possible
to predict, based only on generated output history, a vocoder
feature sequence aligned with the reference waveform.

TTS has an inherently continuous output space. Hence dur-
ing training, it is often assumed that the output tokens follow
a certain type of distribution, so that minimizing the loss L(A)

y

shown in equation 16 can be approximated by minimizing some
simple distance metric between y1:T and ŷ1:T . For example,
assuming that the distribution shown in equation 10 is Gaus-
sian, minimizing L(A)

y is equivalent to minimizing the average
Euclidean distance: L(A)

y (θ̂) ∝
∑N
n=1

∑T
t=1 ||y

(n)
t − ŷ(n)

t ||.
At inference stage, the exact search from p(y1:T |x∗

1:L;θ) is ap-
proximated by greedy search.
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(a)

(b)

Figure 3: Listening tests comparing 100Hz and 200Hz models;
frame-level models trained with (a) teacher forcing, (b) atten-
tion forcing; waveform generated using a PML vocoder

5. Experiments
The TTS experiments are conducted on LJ dataset [27], which
contains 13100 utterances from a single speaker. The utterances
vary in length from 1 to 10 seconds, totaling approximately 24
hours. The training-validation-test split is 13000-50-50. The
speech is down-sampled to 16kHz for the neural vocoder. The
default frame rate is 200Hz, which is common for TTS, and is
sometimes reduced to 100Hz for comparison. The reference
vocoder features are extracted with PML vocoder [28], as a
study comparing various vocoders shows that PML has the best
overall performance [29].

The frame-level seq2seq models and their training are the
same as the Tacotron described by Table 1 in [13], except that:
1) the decoder target is PML features; 2) the attention mech-
anism is the hybrid (content-based + location-based) attention
[10]; 3) each decoding step predicts 5 frames; 4) some models
are trained with Attention Forcing (AF). The waveform-level
models and their training are the same as the Hierarchical Re-
current Neural Network (HRNN) neural vocoder in [30], except
that 1) the Gated Recurrent Unit (GRU) [31] dimension is 512;
2) each recurrent tier uses one layer of GRU; 3) the frequencies
for tiers 0 to 3 are respectively 16, 8, 2 and 0.4kHz. The neural
vocoders are trained with Teacher Forcing (TF). The seq2seq
models are trained with TF or AF. The scaling factor γ is 50.
During inference, all the models operate in free running mode.

For TTS, human perception is the best metric for overall
speech quality. Hence the models are compared in subjective
listening tests. Over 30 workers from Amazon Mechanical Turk
are instructed to listen to pairs of utterances, and indicate which
has better overall quality. Each comparison includes five pairs
of utterances from the test set. So the test set is subjectively
evaluated about three times. In addition, global variance is com-
puted for each model, to objectively measure the expressiveness
[32]; it is averaged over the test set and feature dimensions.

To see the impact of AF on frame rate, two pairs of seq2seq
models are trained. The first pair, {θ1,θ2}, is trained with TF;
θ1 and θ2 operate at 100Hz and 200Hz respectively. The second
pair, {θ̂1, θ̂2}, has the same frame rates, but is trained with AF.
PML vocoders map the features to speech. Figure 3 (a) shows
the result of the listening test comparing {θ1,θ2}, and figure 3
(b) is the equivalent for {θ̂1, θ̂2}. Each number indicates a per-
centage of preference. The results show that reducing the frame
rate is beneficial for TF, despite the introduction of some noise.
In contrast, AF allows the use of a higher frame rate, which im-
proves the speech quality. We strongly encourage listening to
the samples, which clearly demonstrates the differences.2

To see the impact of AF for seq2seq models, the best TF
model θ1 is compared with the best AF model θ̂2. Figure 4 (a)
shows the result: AF yields better performance. As for expres-

2The code and samples generated by each model are available at
http://mi.eng.cam.ac.uk/~qd212/ispc2020

(a)

(b)

(c)

Figure 4: Listening tests comparing teacher forcing and atten-
tion forcing; waveform generated using (a) PML vocoder (b,c)
neural vocoder

Table 1: Global variance of vocoder features generated by dif-
ferent models, computed over the test set, averaged over all se-
quences and dimensions

Global variance
Training 200Hz 100Hz

Teacher forcing 0.39 0.54
Attention forcing 0.71 0.70

siveness, table 1 shows the global variances of all the models. It
can be seen that AF yields more expressiveness than TF. Dou-
bling the frame rate results in less expressiveness for TF, but
not for AF. One likely reason is that AF prevents the model
from copying the output history. Note the consistency between
table 1 and figure 3, i.e. expressiveness and preference, indicat-
ing that expressiveness is important for overall quality. While
speed is not the focus of this work, it can be important for TTS,
and is reported here for information. For the 200Hz models,
one iteration takes about 3.0s with TF, and 2.6s with AF; gener-
ating one second of feature sequence takes about 0.64s. For the
100Hz models, the time is halved thanks to shorter sequences.

Next, completely neural TTS systems are built, to investi-
gate the synergy between AF and neural vocoders. For a TF
system, a neural vocoder φ is trained with the vocoder features
generated by θ in TF mode. For an AF system, a neural vocoder
φ̂ is trained with the vocoder features generated by θ̂ in AF
mode. Figure 4 (a) and (b) show that AF works better with
neural vocoders: when PML vocoders are replaced by neural
vocoders, the AF system outperforms the TF system even fur-
ther. Figure 4 (b) and (c) show that AF results in the best neural
TTS system. An extra finding is that for TF systems, neural
vocoders can fix issues caused by high frame rate. While figure
3 (a) shows that θ1 outperforms θ2, figure 4 (b) and (c) show
that a neural vocoder can help θ2 surpass θ1. One likely reason
is that the neural vocoder alleviates the loss of expressiveness
caused by high frame rate.

6. Conclusion
This paper introduces attention forcing, which guides a seq2seq
model with generated output history and reference attention.
This approach can train the model to recover from its mistakes
without the need for a schedule or a classifier. In addition, it
allows the use of a higher frame rate, as it prevents the model
from copying the output history. Finally, it allows the model
to generate output sequences aligned with the references, which
can be important for down-stream tasks such as training neural
vocoders. The experiments show that attention forcing allows
doubling the frame rate and yields significant gain in expres-
siveness and overall speech quality.
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