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Abstract

We propose Jointly trained Duration Informed Transformer
(JDI-T), a feed-forward Transformer with a duration predictor
jointly trained without explicit alignments in order to generate
an acoustic feature sequence from an input text. In this work,
inspired by the recent success of the duration informed net-
works such as FastSpeech and DurIAN, we further simplify its
sequential, two-stage training pipeline to a single-stage train-
ing. Specifically, we extract the phoneme duration from the
autoregressive Transformer on the fly during the joint train-
ing instead of pretraining the autoregressive model and using
it as a phoneme duration extractor. To our best knowledge, it is
the first implementation to jointly train the feed-forward Trans-
former without relying on a pre-trained phoneme duration ex-
tractor in a single training pipeline. We evaluate the effective-
ness of the proposed model on the publicly available Korean
Single speaker Speech (KSS) dataset compared to the baseline
text-to-speech (TTS) models trained by ESPnet-TTS.
Index Terms: text-to-speech, speech synthesis, Transformer,
Korean speech

1. Introduction
Deep learning approaches to text-to-speech (TTS) task have
made significant progress in generating highly natural speech
close to human quality. Especially attention-based encoder-
decoder models such as Tacotron [1] and Tacotron2 [2] are dom-
inant in this area. They generate an acoustic feature sequence,
mel-spectrogram, for example, from an input text autoregres-
sively using an attention mechanism where the attention mech-
anism plays the role of implicit aligner between the input se-
quence and the acoustic feature sequence. Finally, Griffin-Lim
algorithm [3] or a neural vocoder such as WaveNet [4], Wave-
Glow [5] or Parallel WaveGAN [6] is used to convert the pre-
dicted acoustic feature sequence to corresponding audio sam-
ples.

Besides Recurrent Neural Network (RNN) based TTS mod-
els (Tacotron [1], Tacotron2 [2]), Transformer [7] has also been
applied for TTS in the attention-based encoder-decoder frame-
work successfully achieving the quality of human recording.
The self-attention module, followed by a nonlinear transforma-
tion in the Transformer [8], solves the long-range dependency
problem by constructing a direct path between any two inputs
at different time steps and improves the training efficiency by
computing the hidden states in an encoder and a decoder in par-
allel.

Despite its success in synthesizing high-quality speech, the
attention-based encoder-decoder models are prone to the syn-
thesis error, which prevents its commercial use. The unstable
attention alignment at synthesis causes the synthesized speech

to be imperfect, e.g., phoneme repeat, skip, or mispronuncia-
tion. To solve this problem, duration informed networks such
as FastSpeech [9] and DurIAN [10] reduce the errors by relying
on a duration predictor instead of the attention mechanism.

The reliance on the duration predictor instead of the at-
tention mechanism is more robust since the duration predic-
tor guarantees stepwise and monotonic alignments between a
phoneme sequences and mel-spectrogram. Although the du-
ration informed networks can synthesize high-quality speech
without the synthesis error, the training process is tricky: a pre-
trained model must be prepared as a phoneme duration extractor
since the duration informed networks cannot be trained without
a reference phoneme duration sequence.

For example, FastSpeech [9] extracts a phoneme dura-
tion sequence from attention alignments matrix of pre-trained
autoregressive Transformer for training a feed-forward Trans-
former and a duration predictor. On the other hand, DurIAN
[10] uses the forced alignment, which is commonly used in sta-
tistical parametric speech-synthesis systems to train their du-
ration models. Thus, the previous duration informed networks
have sequential, two-stage training pipeline, which may slow
down the model training time. More recently, duration in-
formed network not requiring pre-trained model [11] has been
proposed, but it still requires a multi-stage training phase.

We are motivated by a simple idea that if the attention
mechanism of the autoregressive Transformer can provide re-
liable phoneme duration sequences from the early in joint train-
ing, the previous two-stage training pipeline of the duration in-
formed networks could be combined. In this paper, we sim-
plify the training pipeline of the duration informed networks by
jointly training the feed-forward Transformer and the duration
predictor with the autoregressive Transformer. The contribu-
tions of our work are as follow:

• We propose a novel training framework where the feed-
forward Transformer and the duration predictor are
trained jointly with the autoregressive Transformer. By
acquiring reference phoneme duration from the autore-
gressive Transformer during the training on the fly, the
previous two-stage training pipeline of the typical du-
ration informed networks such as FastSpeech [9] or
DurIAN [10] is simplified to a single-stage training.

• We remedy an instability of the attention mechanism of
the autoregressive Transformer by adding an auxiliary
loss and adopt a forward attention mechanism [12]. This
makes the phoneme duration sequence extracted from
the attention mechanism reliable from the early on in
training.

• We prove the effectiveness of the proposed model by
comparing it with popular TTS models (Tacotron2,
Transformer, and FastSpeech) implemented from
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Figure 1: An illustration of our proposed joint training frame-
work (Auxiliary loss for attention is omitted for brevity.)

ESPnet-TTS [13] on the publicly available Korean
dataset.

2. Model description
The main idea of JDI-T is to train feed-forward Transformer
and duration predictor with autoregressive Transformer jointly.
In this section, we describe each component in detail.

2.1. Feed-Forward Transformer

Feed-forward Transformer located on the left in Figure 1 con-
sists of a phoneme embedding, an encoder pre-net, scaled po-
sitional encodings, multiple Feed-Forward Transformer (FFT)
blocks, a length regulator and a linear layer for phoneme se-
quence to mel-spectrogram transformation.

As shown in Figure 2a, the structure of FFT blocks is com-
posed of a multi-head attention and a single layer 1D convolu-
tion network where residual connections, layer normalization,
and dropout are used. It is slightly different from what described
in [9]. Note that the output of each FFT block on both sides is
normalized by layer normalization. Encoder pre-net and scaled
positional encoding have the same configuration as described in
Transformer TTS [7].

The stacked modules from the phoneme embedding to the
FFT blocks below the length regulator works as the encoder,
which is also shared by autoregressive Transformer and dura-
tion predictor. The length regulator regulates an alignment be-
tween the phoneme sequences and the mel-spectrogram in the
same way described in FastSpeech [9], expanding the output
sequences of FFT blocks on phoneme side according to refer-
ence phoneme duration so that total length of it matches the
total length of mel-spectrogram. The feed-forward Transformer
is trained to minimize l1 loss between predicted and reference
mel-spectrogram.

2.2. Autoregressive Transformer

Autoregressive Transformer is an attention-based encoder-
decoder model as shown in Figure 1 where it shares the encoder
with the feed-forward Transformer on the left bottom and the
output of the encoder is attended by the stacked modules on
the right consisting of a decoder pre-net, a scaled positional en-
coding, a decoder, and a linear layer. The decoder depicted in

(a) FFT Block (b) Decoder

Figure 2: (a) The feed-forward Transformer block. (b) The de-
coder for autoregressive Transformer

Figure 2b has the similar structure with the FFT block in Figure
2a but there are differences of having masked multi-head atten-
tion instead of multi-head attention, additional sub-layer in the
middle for attention mechanism over the outputs of the encoder
and position-wise Feed Forward Network (FFN) instead of 1D
convolution network. Note that the output of the decoder is nor-
malized by layer normalization. The FFN of the decoder and
the decoder pre-net have the same configuration as described in
Transformer TTS [7].

The autoregressive Transformer provides reference
phoneme duration during training for each phoneme on the
fly. Specifically, while training the autoregressive Transformer
to minimize l1 loss between predicted and reference mel-
spectrogram, phoneme duration is extracted from the attention
alignment matrix by counting the number of mel frames
which scores the highest value for each distinct phoneme. The
phoneme duration acquired in this way is used as reference
phoneme duration for the length regulator of feed-forward
Transformer and the duration predictor. Note that the decoder,
unlike described in Transformer TTS [7], neither has been
stacked nor has multi-head attention over the outputs of the
encoder since it was sufficient as a phoneme duration extractor.

2.3. Duration Predictor

Duration predictor consists of a 2-layer 1D convolution net-
work with ReLU activation followed by the layer normalization,
dropout layer and an extra linear layer to output a scalar value
which is interpreted as phoneme duration in the logarithmic do-
main. The depiction of duration predictor is omitted since it
is exactly same as described in FastSpeech [9]. As shown in
the middle top of Figure 1, the duration predictor also shares
the encoder with feed-forward, autoregressive Transformer so
it is stacked on top of the FFT blocks on the phoneme side.
In order to minimize the difference between predicted and ref-
erence phoneme duration, l2 loss is used, where the reference
phoneme duration is extracted from an attention alignment ma-
trix of autoregressive Transformer during training. Note that
we stop gradients propagation from the duration predictor to the
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FFT blocks during joint training, since the training fails without
it.

3. Auxiliary loss and Attention mechanism
It is very important to stabilize the attention alignments of au-
toregressive Transformer, since the training of the proposed
model requires precise phoneme duration and the quality of
phoneme duration is affected by the stability of attention align-
ment of autoregressive Transformer. In this section, we describe
some methods for acquiring reliable phoneme duration by stabi-
lizing attention alignments of autoregressive Transformer from
the early in training steps.

3.1. CTC recognizer loss

In [14], authors insist that the synthesis error rate of attention
based TTS models can be alleviated if the model is guided to
learn the dependency between the input text and the predicted
acoustic feature sequences by maximizing the mutual informa-
tion between them. After formulating that maximizing the mu-
tual information is equivalent to training an auxiliary recog-
nizer, they show that training CTC recognizer as auxiliary loss
for the Tacotron TTS model can reduce the synthesis error.

Although the method of maximizing the mutual informa-
tion is proposed for reducing the synthesis error of the attention-
based model, we found that it also helps autoregressive Trans-
formers learn stable attention alignments during training, which
is a crucial factor for the proposed model to be jointly trained
successfully. In this work, we implement it just by adding an ex-
tra CTC loss layer. Specifically, the extra linear layer is stacked
on top of the decoder of the autoregressive Transformer so that
it is trained to predict input phoneme sequences.

3.2. Forward attention with Guided attention loss

As reported in [15], location-relative attention mechanisms are
more preferred over the content-based attention mechanisms in
that they not only reduce synthesis error but also help the model
align quickly during training. However, it is not proper for par-
allel computing. If it is used in the autoregressive Transformer
such as Transformer TTS [7], the computation efficiency is sac-
rificed. Therefore we adopt forward attention mechanism [12]
on top of content-based attention mechanism for minimal com-
putational overhead instead of location-relative attention mech-
anisms. The forward attention mechanism guarantees fast con-
vergence and stability of the attention alignments by consider-
ing only monotonic attention alignment paths, which is a nat-
ural assumption between the input phoneme sequences and the
output acoustic feature sequences.

Algorithm 1 states the forward attention mechanism
adopted for the proposed model. The algorithm has same pro-
cedures as in original paper [12] except that it prepares the at-
tention weights w1:T (1 : N) for all time steps N,T in parallel
using the attention mechanism Attention. The Attention is
a single-head, content-based attention from the decoder of au-
toregressive Transformer using an output sequences of the FFT
blocks on phoneme side h1:N and an output sequences of the
decoder s1:T which has the length of N and T respectively.

Although the forward attention mechanism guarantees
monotonic attention alignments in principle, it is observed that
the training often fails without learning any valid alignments.
We found that guiding attention alignments with auxiliary loss
is useful in solving the problem [16, 17]. In the proposed model,
the guided attention loss with the same configuration as de-

Algorithm 1 Forward Attention

Initialize:
α̂0(1)← 1
α̂0(n)← 0, n = 2, . . . , N
w1:T (1 : N)← Attention(h1:N , s1:T )

for t = 1 to T do
α̂′t(n)← (α̂t−1(n) + α̂t−1(n− 1))wt(n)

α̂t(n)← α̂′t(n)
/∑N

m=1 α̂
′
t(m)

ct ←
∑N

n=1 α̂t(n)hn

end for

scribed in [16] is added as auxiliary loss term for training the
model since it keeps a single joint training property without de-
pending on external modules. It applies constraint on attention
alignments matrix in the form of the diagonal mask based on the
idea that the input phoneme sequences and the output acoustic
feature sequences have nearly diagonal correspondence.

Consequently, the loss function of the proposed model con-
sists of two l1 losses for the mel-spectrogram, a l2 loss for
phoneme duration, and two auxiliary losses, which are CTC
recognizer loss and Guided Attention (GA) loss. It can be for-
mulated as follows:

L =‖y − y′‖+ ‖y − y′′‖+ ‖d− d′‖2
+ CTCLoss + GALoss

(1)

where y, y′ and y′′ are the mel-spectrograms from the ref-
erence, autoregressive Transformer and feed-forward Trans-
former respectively, d is a phoneme duration sequences from
the attention mechanism of autoregressive Transformer and d′

is a phoneme duration sequences from the duration predictor. It
can be future works to investigate an effect of different scaling
constants for each loss term.

After joint training, the autoregressive Transformer is no
longer needed, so only the feed-forward Transformer and the
duration predictor are used for synthesis. The feed-forward
Transformer generates a mel-spectrogram y′′ from the input
phoneme sequences in parallel using the phoneme duration se-
quence predicted by the duration predictor.

4. Experiments
4.1. Datasets

We conduct experiments on two different datasets. The first
dataset is an internal speech recorded by a professional Korean
female speaker in studio quality. The number of utterances used
for training is 25k, among which 250, 50 samples were reserved
for validation and testing, respectively. The second dataset is
Korean Single speaker Speech (KSS) Dataset [18], which is
publicly available for the Korean text-to-speech task. It consists
of 12,853 utterance audio files recorded by a professional fe-
male voice actress and transcription extracted from their books
with a total audio length of approximately 12 hours. We re-
served the last 250 utterances; 200 samples for validation and
50 samples for testing.

We convert the input text to phoneme sequences using
an internal text processing tool. The acoustic feature is 80-
dimensional mel-spectrogram extracted from audio with sam-
pling rate of 22,050 Hz using the Librosa library [19]. FFT
size and hop size are 1024, 256 respectively. Finally, the mel-
spectrogram is normalized so that every element of the feature
vector has zero mean and unit variance over the training set.

4006



4.2. Model configuration

The proposed model has 6 FFT blocks in the feed-forward
Transformer both on the phoneme side and the mel-spectrogram
side. The number of head for self-attention is set to 8, and the
kernel size of 1D convolution is set to 5. The inner-layer dimen-
sion of the position-wise feed-forward network is set to 2048,
and all other dimensions not stated explicitly have been set to
512. The proposed model is implemented by PyTorch [20] neu-
ral network library and trained on 4 NVIDIA V100 GPUs with a
batch size of 16 per each GPU. We optimize it using the RAdam
algorithm [21] with the same learning rate schedule as in [8]
about 300k training steps.

For comparative experiments, we train another three mod-
els using ESPnet-TTS [13] which is open-source speech pro-
cessing toolkit supporting state-of-the-art end-to-end TTS mod-
els. The models are two autoregressive, attention-based models:
Tacotron2.v3 and Transformer.v1 and a non-autoregressive, du-
ration informed model FastSpeech.v2 following the configura-
tion in the recipe of the toolkit. Note that the FastSpeech.v2
uses pre-trained Transformer.v1 as teacher model.

We use Parallel WaveGAN [6] as the vocoder for transform-
ing the generated mel-spectrogram to audio samples in all ex-
periments.

4.3. Evaluation

To evaluate the effectiveness of the proposed model, we con-
duct the Mean Opinion Score (MOS) test 1. The proposed
model, JDI-T, is compared with three different models, includ-
ing Tacotron2, Transformer, and FastSpeech. The audio sam-
ples for the MOS test are generated using scripts of the test
samples reserved for each dataset, and thirteen native Korean
speakers listen to all of it for measuring the audio quality. Table
1 shows the results on two different datasets; the Internal and
the KSS. Note that the results of GT mel are the evaluation of
the audio samples converted from reference mel-spectrogram
by the vocoder; thus, it indicates upper bounds that our TTS
models can achieve.

The results of the MOS test on both datasets show that the
score of the duration informed model (FastSpeech) is lower than
the attention-based model (Tacotron2, Transformer). Therefore
it can be said that duration informed model is challenging to
match the audio quality of its teacher model, especially by com-
paring the FastSpeech with its teacher model; Transformer. In
this case, a more elaborate training technique, focus rate tuning,
or sequence-level knowledge distillation, as described in [9],
would be required to improve the audio quality by its teacher
model. On the other hand, the score of our proposed model,
which is also non-autoregressive and duration informed model
like FastSpeech, is better than FastSpeech and even achieves
the highest score among the TTS models in the Internal dataset.
These results show that the joint training of the proposed model
is beneficial for improving the audio quality as well as for sim-
plifying the training pipeline.

In contrast, the score of the proposed model is lower than
Transformer in the KSS. It may derived from the fact that the
quality of audio files is poorer (i.e., the pronunciation is unclear)
in KSS dataset than in the Internal dataset which is recorded
in studio quality with commercial use in mind. So, it seems
that the proposed model has the difficulty of learning precise
attention alignments with relatively poor sound quality of audio

1Audio samples are available at the following URL: https://
imdanboy.github.io/interspeech2020

Table 1: Mean opinion scores (5-point scale)

Model Internal KSS

GT mel 3.92 3.87
Tacotron2 3.52 3.33
Transformer 3.55 3.72
FastSpeech 3.48 3.23
JDI-T (ours) 3.77 3.52

files. It can be future works to make the model learn better
alignments during joint training even in the slightly poor sound
quality of audio files.

In addition to its high-quality speech synthesis, the pro-
posed model has benefits of the robustness and fast speed at
synthesis over the autoregressive, attention-based TTS models
since it has the feed-forward structure and does not rely on an
attention mechanism as in FastSpeech [9]. Moreover, our in-
ternal test shows that Tacotron2 and Transformer have a high
rate of synthesis error, especially when they are trained with
the KSS dataset and synthesize the out-of-domain scripts. Note
that the synthesized audio samples from the test scripts have no
synthesis error.

5. Conclusion
In this paper, we propose Jointly trained Duration Informed
Transformer (JDI-T) for TTS. The proposed model, consist-
ing of the feed-forward Transformer, the duration predictor,
and the autoregressive Transformer, is trained jointly with-
out explicit alignments. After joint training, only the feed-
forward Transformer with the duration predictor is used for
fast and robust conversion from phoneme sequences to mel-
spectrogram. Experimental results on publicly available Korean
datasets prove the effectiveness of the proposed model by show-
ing that it can synthesize high-quality speech. Furthermore,
it achieves state-of-the-art performance in the internal studio-
quality dataset compared to other popular TTS models imple-
mented from ESPnet-TTS.
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