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Abstract
Most end-to-end neural text-to-speech (TTS) systems generate
acoustic features autoregressively from left to right, which still
suffer from two problems: 1) low efficiency during inference;
2) the limitation of “exposure bias”. To overcome these short-
comings, this paper proposes a non-autoregressive speech syn-
thesis model which is based on the transformer structure. Dur-
ing training, the ground truth of acoustic features is schedule
masked. The decoder needs to predict the entire acoustic fea-
tures by taking text and the masked ground truth. During infer-
ence, we just need a text as input, the network will predict the
acoustic features in one step. Additionally, we decompose the
decoding process into two stages so that the model can consider
the information in the context. Given an input text embedding,
we first generate coarse acoustic features, which focus on the
meaning of sentences. Then, we fill in missing details of acous-
tic features by taking into account the text information and the
coarse acoustic features. Experiments on a Chinese female cor-
pus illustrate that our approach can achieve competitive results
in speech naturalness relative to autoregressive model. Most
importantly, our model speed up the acoustic features genera-
tion by 296× compared with the autoregressive model based
on transformer structure.
Index Terms: speech synthesis, non-autoregressive, schedule
mask predicting, coarse-to-fine decoding

1. Introduction
Due to the powerful modeling capabilities of deep neural net-
works, end-to-end models [1–3] are proposed to simplify tradi-
tional TTS pipeline [4–7] with a single neural nerwork. They
are mainly encoder-decoder [8] structure based on RNN [9] or
transformer [3] structure. These models have significantly im-
proved the quality of synthesized speech [1, 2, 10]. They have
two common characteristics: firstly, the ground truth of acous-
tic features are fed to decoder to predict the next frame during
training; secondly, they generate acoustic features autoregres-
sively from left to right during inference. Since the above char-
acteristics, those systems are still facing two challenges.

One challenge is the limitation of “exposure bias” [11]. The
decoder is an autoregressive structure which will prevent the
usage of future information during training and inference. Since
the model has never been exposed to its own predictions, it will
result in error accumulation at test time. Some methods have
been proposed to address this problem [11–13]. For example,
scheduled sampling [11], randomly selecting between previous
ground truth element and generated element, has become the
current dominant training procedure to fit RNNs based models.
However, it can only alleviate this problem but cannot solve the
problem fundamentally.

The other challenge is low efficiency during inference. Al-
though CNN [14] network and transformer [3] structure can

speed up the training over RNNs based model [1,2], the models
still have to condition on the previous generated acoustic fea-
tures to generate next frame. This is the essential reason for
model autoregression. Due to the long sequence of acoustic
features, autoregression models have to face the slow inference
speed problem. This problem also limits the application of end-
to-end speech synthesis models in a wider range of places, such
as embedded, terminal, etc.

To overcome the above issues, non-autoregressive models
have been proposed to some sequence generation tasks such as
neural machine translation (NMT) [15–20], automatic speech
recognition (ASR) [21] and TTS [22]. The main idea of non-
autoregressive models is that systems predict sequences within
constants number of interactions which does not depend on
sequence’s length. In fastspeech [22], the authors use a pre-
trained phoneme duration predictor to predict hard alignment
between a phoneme and its acoustic features. Recently mask-
predict method [20] is proposed for encoder-decoder model. It
is a conditional language model similar to BERT [23]. During
training, some random words are replaced by a special mask to-
ken and the network is trained to predict original tokens. This
way gets rid of the limitation that the model depends on the pre-
vious elements and enables the model can fuse the left and the
right context, which can break the problem of “exposure bias”
in autoregressive models. The method has been widely used in
NMT tasks and the experiments get effective results.

In this paper, inspired by the idea of mask-predict [20],
we propose a novel non-autoregressive end-to-end TTS model
based on transformer structure. During training, acoustic fea-
tures are randomly masked and the goal of the model is to pre-
dict the whole acoustic features and stop tokens. During infer-
ence, only a text sequence is needed and the model will output
the whole features in one step. In addition, to further boost-
ing the quality of speech, we decompose the decoding process
into two stages. The first decoder predicts coarse acoustic fea-
tures which focuses on the meaning of sentences. Subsequently,
the second decoder fills in missing details by conditioning on
the text information and the coarse acoustic features. Different
from the first decoder, the second decoder foreknows what the
basic structure of the speech looks like and the model can use it
as global context to improve the prediction of the final details.
Experimental results show that our framework achieves compet-
itive performance compared to autoregressive models and the
synthesis speed is much faster than the autoregressive model.

2. Background: autoregressive end-to-end
TTS model

Firstly, let’s understand how autoregressive TTS model works.
Our goal is to generate acoustic features from text information.
Given a text sequences x = (x1, x2, . . . , xT ) and its target
acoustic features y = (y1, y2, . . . , yT ′). We wish to estimate
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Figure 1: (a) illustrates the whole structure of non-autoregressive model. During training, the input texts are inputted into the trans-
former encoder module. The encoder is composed of a stack of self-attention blocks. At decoding stage, the ground truth is first masked
by a schedule masking mechanism, then the coarse acoustic features ycoarse are predicted based on text information and masked ground
truth. The stop token is predicted by a linear projection after coarse decoder. Finally, the fine decoder combines the predicted acoustic
features ycoarse and text information to predict the final acoustic features yfine. (b) illustrates the details of the coarse decoder and
fine decoder. (c) illustrates the probability P of each frame in ground truth being masked changes through the training epochs.

P (y|x; θ), the TTS model predicting acoustic features y given
input x, and θ is corresponding model parameters. The autore-
gressive model decomposes P (y|x; θ) into a multi-stage gener-
ation process, which can be expressed as:

P (y0|x; θ) = 1 (1)

P (y1|x; θ) = P (y1|y0, x; θ) ∗ 1 (2)

P (y2, y1|x; θ) = P (y2|y1, y0, x; θ) ∗ P (y1|y0, x; θ) ∗ 1 (3)

· · ·

P (y|x; θ) =
T ′∏

t=1

P (yt|y<t, x; θ) (4)

The formulas show autoregressive TTS model adopts previous
targets (y1, . . . , yt−1) as history to predict current target yt in
tth step. y0 is the start label of acoustic features.

3. Proposed non-autoregressive TTS model
The advantage of autoregression is that it can fuse context in-
formation to make the synthesized speech more natural, but the
disadvantage is that it will lead to exposure bias and low effi-
ciency during inference. To retain the strengths and eliminate
the weaknesses, our proposed framework and the description of
our model are shown in Fig. 1. In this section, we will present
the ideas about schedule mask predicting and coarse-to-fine de-
coding in detail.

3.1. Schedule mask predicting

The reason for autoregression is that the model has to depend
on previous elements to predict current acoustic feature. So
the key insight to make it non-autoregressive is replacing the
previous frames with some other else. One simple assumption
is that each frame is independent. Under this assumption, we
do not need to rely on previous acoustic features to predict the
current frame. But this assumption is too strong since acous-

tic features are continuous and training will be extremely hard
and not convergence. Inspired by the idea of mask-predict [20],
our idea is replacing y<t with partial ground truth. A new
token < mask > is introduced for training and inference.
We randomly replace part of the ground truth with the token
< mask > during training, which means the masked frames are
independent to the predicted frames. The non-autoregressive
TTS model can be expressed as:

P (y|x; θ) =
T ′∏

t=1

P (yt|yt �=<mask>, x; θ) (5)

yt �=<mask> stands for the frames which not replaced by the <
mask > token. Since we assume each frame is conditionally
independent, those predictions can be done parallelly.

Different from the training stage, there is no ground truth
during inference, we propose a schedule masking mechanism
to make the model match the inference stage at the end of train-
ing. During training, this mechanism will randomly decide,
whether we mask each frame with probability Pmask. When
Pmask = 0, the model is trained exactly as autoregressive
model; when Pmask = 1, the model is trained in the same set-
ting as inference. With the training epoch growing, the proba-
bility of each frame being masked is increasing and the decoder
will get less information of ground truth. At the end of training,
the value of Pmask will be equal to 1, all ground truth will be
masked and model can predict acoustic features based on input
text only, which matches the inference stage’s decoding setting.
There are many functions that can satisfy this monotonically
increasing from 0 to 1. In this paper, we use inverse sigmoid
decay to compute the Pmask inspired by the schedule sampling
method [11].

Pmask = 1− k

(k + exp(i/k))
(6)

where k >= 1 depends on the expected speed of convergence
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Figure 2: At the inference stage, we first generate the coarse
acoustic features ycoarse from text information only. Then, a
fine decoder is used to fill in the missing details combining the
coarse acoustic features and text information and predict finer
acoustic feature yfine.

and i stands the num of training epoch. The function curve of
Pmask is shown in the Fig. 1.

3.2. Coarse-to-fine decoding

An essential factor for autoregressive models can generate nat-
ural speech is that the prediction can combine the informa-
tion of previous frames. While when we generate in a non-
autoregressive form, since our assumption is that each frame
is independent of each other, the model can not combine other
frames’ information. To solve this problem, we decompose de-
coding process into two stages, which is called coarse-to-fine
decoding. Fig. 2 illustrates the coarse-to-fine decoding archi-
tecture, where consists of a coarse decoder and a fine decoder.
The first stage of decoding is a coarse decoder which predicts
coarse acoustic features from the global text information. Since
there is no ground truth during inference, the coarse decoding
can be expressed as:

(7)

It can be seen from the formula that the model predicts the
acoustic features ycoarse based on text information merely at
first stage. The predicted features ycoarse are relatively rough
acoustic message because it lacks the context information of the
acoustic features. Based on this, we perform the second decod-
ing, which feed ycoarse and x to fine decoder to predict finer
acoustic features, it can be expressed as:

P (yfine|x; θ) =
T ′∏

t=1

P (yt|ycoarse, x; θ) (8)

The fine decoder combines the global information of acous-
tic features and text information together, and generates more
nature and expressive speech. There are two advantages to the
coarse-to-fine decoding form. Firstly, the model can gener-
ate more natural speech while retaining parallel decoding, after
generating the coarse acoustic features, the decoder knows what
the basic meaning of the speech looks like, and the model can

use it as global context to improve the prediction of the final
details. Secondly, our approach fundamentally solves the issue
of “exposure bias” and improves the stability of the system.

4. Experiments
In this section, we conduct experiments to evaluate our pro-
posed method on a 20-hour, 16kHz, 16bit speech corpus, which
is recorded by a professional chinese female speaker. We eval-
uate the performance of the model based on speech quality and
inference speed. Furthermore, we explore the effects of coarse-
to-fine decoding.

4.1. Setup

We train four systems to illustrate the effectiveness of our pro-
posed model.

• Baseline(tacotron2) stands for autoregressive TTS
model which the decoder is based on lstm. The struc-
ture details are same as tacotron2 in paper [2].

• Baseline(transformer) stands for autoregressive TTS
model which is based on transformer structure. The
structure details are same as the model in paper [10].

• Transformer+mask stands for non-autoregressive TTS
model which is improved from Baseline(transformer)
model by only using schedule masking.

• Proposed method stands for non-autoregressive TTS
mode which is trained by adding coarse-to-fine decod-
ing based on model Transformer+mask.

To get rid of the impact of model parameters on the model
performance, all transformer-based models have the same en-
coder module. The transformer encoder is same as the encoder
in [10]. The block numbers of encoders are all 3. Additionally,
we ensure the block numbers of decoder in each transformer-
based model are equal. Specifically, the block numbers of de-
coder in Baseline(transformer) and Transformer+mask are
all 6. In Proposed method, the block number of coarse decoder
is 3, and the block number of fine decoder is 3.

Acoustic features are extracted with 10 ms window shift.
LPCNet [24] is utilized to extract 32-dimensional acoustic fea-
tures, including 30-dimensional BFCCs [25], 1-dimensional
pitch and 1-dimensional pitch correction parameter. Parame-
ters of above models are all optimized using AdaDelta [26] with
learning rate 0.001.

4.2. Subjective evaluation

We conduct Mean Opinion Score (MOS) listening test for au-
dio quality on the test set. We keep the text content consis-
tent among different models so as to exclude other interference
factors, just examining audio quality. 20 listeners participated
the evaluation. In each experimental group, 20 parallel sen-
tences are selected randomly from testing sets of each system.
Table 1 shows the MOS score of each system. Comparing
with autoregressive model Baseline(transformer) and Base-
line(tacotron2), our proposed method has comparable results
with them, this is because our model gets rid of the problem of
“exposure bias” in the autoregressive model and we decompose
decoding process into two stage to learn more natural speech.
When we eliminate coarse-to-fine decoding model, which is the
Transformer+mask model, we find that Transformer+mask
is worse than Proposed model and other autoregressive mod-
els. This result suggests that decoding from coarse-level to fine-

P (ycoarse|x; θ) =
T ′∏

t=1

P (yt|x; θ)
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Table 1: The MOS score with 95% confidence intervals

Model MOS TYPE

Baseline(tacotron2) 4.25± 0.07 autoregressive
Baseline(transformer) 4.18± 0.07 autoregressive

Transformer+mask 3.76± 0.08 non-autoregressive
Proposed model 4.20± 0.07 non-autoregressive

Figure 3: The comparison of spectrums between coarse speech
ycoarse and fine speech yfine

level is beneficial and removing the fine decoder harms perfor-
mance since the decoder loss access to global contextual acous-
tic feature information.

4.3. Effectiveness of coarse-to-fine decoding

To further understand the role of coarse-to-fine decoding, firstly,
we visualize some spectrograms of synthetic speech. Fig. 3
shows the generated spectrograms of coarse acoustic features
ycoarse and fine acoustic features yfine. In the high frequency
part, we can find yfine is more clear by observing part 1 and
2; in the low frequency, by observing part 3, we can find coarse
speech’s spectrum connection is not smooth which will cause
the speech to sound unnatural. After fine decoder, the spectrum
is more natural. The function of fine decoder is to improve the
unnatural phenomenon of the low frequency part and to supple-
ment the details of the high frequency part.

Secondly, Fig. 4 shows the acoustic features’s loss func-
tion of the training process. We can find that yfine in our Pro-
posed model can reach the lowest level, which means it is the
closest to the ground truth. Compared with the loss of Trans-
former+mask, although we guarantee the consistency of the
model parameters, the Proposed model can be optimized to a
better level. This shows that the decomposition of the decoding
stage into two stages can help the model to combine the learned
coarse acoustic information for further optimization and make
the final acoustic features more precise.

4.4. Inference speed

We evaluate the inference speed of our proposed method with
other autoregressive TTS model. The evaluation experiments
are conduct on the serve with 52 Intel Xcon CPU, 512GB mem-
ory and 1 NVIDIA V100 gpu. It is worth mentioning that, in
the design of the model, we have kept the model parameters
as consistent as possible to eliminate their effects. We show
the inference speed for acoustic features generation in Table 2.
It can be seen that Proposed model speeds up acoustic fea-

Proposed model

Proposed model

Transformer

Loss

Epochs

Figure 4: The comparsion of loss function.

Table 2: The comparison of inference speed with 95% confi-
dence intervals for proposed model and the baseline systems.
The value of inference speed indicates how long it takes to syn-
thesize 500 frames acoustic features.

Model Params Inference(s) Speedup

Baseline(tacotron2) 1.87e7 1.934± 0.210 /
Proposed model 1.31e7 0.024± 0.002 80×

Baseline(transformer) 1.29e7 7.116± 0.189 /
Proposed model 1.31e7 0.024± 0.002 296×

tures generation by 80×, compared with Baseline(tacotron2)
model. Proposed model speeds up acoustic features genera-
tion by 296×, compared with Baseline(transformer) model. It
shows that autoregressive generation greatly affects the speed of
model and our proposed method can transform the model into
a non-autoregressive form and increase the speed of synthesis
effectively.

5. Conclusion
In this paper, we present a non-autoregressive end-to-end TTS
model with coarse-to-fine decoding process, aiming to improve
the synthesis speed by parallelly generating while ensuring the
speech’s quality. Firstly, relying on the schedule mask pre-
dicting, the autoregressive TTS model based on transformer
can be changed into non-autoregressive form, which can gen-
erate speech in parallel to improve the synthesis speed. Sec-
ondly, based on coarse-to-fine decoding framework, our ap-
proach allows generating acoustic feature from coarse-level to
fine-level, which is found to be very beneficial for speech’s nat-
uralness. Experiments demonstrate that the proposed model
greatly speeds up synthesis, and the synthesized speech is com-
parable to the autoregressive model. We also verified the profits
of coarse-to-fine decoding. Further, we will try to compress the
non-autoregressive end-to-end TTS model so that the technique
can be applied to a wider range of applications.
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