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Abstract
Previous work on speaker adaptation for end-to-end speech syn-
thesis still falls short in speaker similarity. We investigate an or-
thogonal approach to the current speaker adaptation paradigms,
speaker augmentation, by creating artificial speakers and by
taking advantage of low-quality data. The base Tacotron2
model is modified to account for the channel and dialect fac-
tors inherent in these corpora. In addition, we describe a warm-
start training strategy that we adopted for Tacotron2 training. A
large-scale listening test is conducted, and a distance metric is
adopted to evaluate synthesis of dialects. This is followed by
an analysis on synthesis quality, speaker and dialect similarity,
and a remark on the effectiveness of our speaker augmentation
approach. Audio samples are available online1.
Index Terms: Speaker augmentation, Speech synthesis, dialect
identification, channel modeling, transfer learning

1. Introduction
Recent advances in end-to-end text-to-speech (TTS) synthesis
enable the production of synthetic speech of high quality and
good speaker similarity [1, 2, 3, 4]. Although the speech quality
approaches human naturalness, challenges still remain: first, to
model many speakers simultaneously using a common model
(termed “multi-speaker TTS”) and second, to adapt to voices of
arbitrary new speakers while minimizing the amount of data to
be collected and requiring little or no additional model training
(termed “speaker adaptation”).

Previous work on speaker adaptation can be categorized
into one of two general approaches. The first approach is simple
fine-tuning [5, 6, 7]: the TTS model receives a small amount
of additional training with target speaker data, which must be
transcribed. The second approach is the use of external speaker
embeddings [8, 9], which are extracted from separately trained
automatic speaker verification (ASV) models, and the embed-
dings are input as speaker information to TTS models. This
approach does not require transcriptions, and the speaker em-
bedding can be computed from only a few utterances. However,
it is reported that speaker similarity of unseen speakers is rela-
tively low [8]. On the other hand, there are a few attempts to use
low-quality recordings for TTS. In [10], low-quality recordings
were used for fine-tuning based speaker adaptation. Variational
autoencoder based clean speech and noise factorisation [11, 12]
was also proposed for Tacotron TTS. They conducted speaker
adaptation using artificially corrupted speech data [11] or real
noisy speech [12] and tried to create speaker-adapted ‘clean’
TTS voices via the proposed factorisation.

In our previous work [9], we constructed a multi-speaker
Tacotron TTS model on the VCTK corpus [13], using speaker
embeddings that are transferred from a separately trained ASV

� Equal contribution.
1 https://nii-yamagishilab.github.io/samples-multi-speaker-

tacotron/augment.html

model, and performed zero-shot speaker adaptation. The VCTK
dataset contains high-quality speech recordings from around a
hundred speakers of different English dialects. However, our
model was overfitted to seen speakers, and voice characteris-
tics and dialects of unseen speakers were not well reproduced,
although the quality of synthetic speech was high [9]. We hy-
pothesized that this number of speakers may be small for our
task, and that increasing the number of training speakers can
provide better coverage of the speaker space, avoid overfitting
to seen speakers, and thus improve similarity and perceived di-
alects of unseen speakers. However, TTS-quality datasets larger
than VCTK are not easily found or created.

A more realistic solution would be speaker augmentation,
that is, data augmentation for increasing the number of speakers
used for neural network training. This has been investigated for
ASV [14], wherein they created “artificial” speakers by simply
re-sampling the original audio. They found that this approach
improved their speaker models, and also that their system iden-
tified the artificial speakers as separate from the original ones.
This is known as “vocal tract length perturbation” (VTLP) and it
also improved ASR [15]. This could be useful for multi-speaker
TTS since by adding more speakers, we can hope that neural
networks will be aware of more diverse speaker characteristics
and thus avoid overfitting to seen speakers.

In addition to the above artificial speaker augmentation, we
also consider another idea for speaker augmentation wherein
we use non-ideal TTS data, that is, audio recordings that were
collected for purposes other than TTS, and may not meet our
usual high-quality recording standards, but have a larger num-
ber of speakers. However, carelessly mixing in data from worse
recording conditions is expected to degrade the quality of syn-
thesized speech. Furthermore, unlike artificial speaker augmen-
tation, it also increases the number of different dialects included
in the training database. We therefore once again borrow ideas
from speaker recognition like the neural speaker embeddings in
our previous paper, and propose an improved Tacotron speech
synthesizer to explicitly handle the two factors, channel and di-
alect. Here, the channel is a factor jointly caused by frequency
characteristics of recording equipment, noise and reverberation.
More precisely, in the proposed synthesizer, neural dialect em-
bedding vectors are used to condition Tacotron’s encoder, and
channel labels are used to condition Tacotron’s postnet.

2. Speaker Augmentation for TTS
Data augmentation has shown to be very effective for speech
recognition (e.g. [16, 17]) and speaker recognition [18]. Al-
though data augmentation for speech synthesis was investigated
in the past (e.g. [19, 20]), improvements are rather small and
the best augmentation strategy for speech synthesis is still un-
known. In this paper we consider two speaker augmentation
ideas and investigate how such augmentation improves multi-
speaker end-to-end TTS.
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Figure 1: Diagram of our TTS system for speaker augmentation
using low-quality data. This is modified from [9] to accommo-
date for the additional channel and dialect factors, by adding a
channel-aware postnet and a dialect encoder network.

2.1. Artificial speaker augmentation
The first method of speaker augmentation is the same as [14]
wherein we create “artificial” speakers by manipulating the
high-quality audio signals. This is a re-sampling of waveforms,
and the resulting signals have different fundamental frequency,
speaking rate, formants, and spectra. We implemented this aug-
mentation using the SoX [21] ‘speed’ command, which speeds
up or slows down audio by resampling. We created ‘x0.9’ and
‘x1.1’ re-sampled versions of each VCTK speaker’s speech,
and used this augmented dataset to train a speaker-augmented
Tacotron model.

2.2. Speaker augmentation using low-quality data
The second method of speaker augmentation is to use low-
quality data collected for purposes other than TTS, such as
ASR. Such data can represent a diverse range of speakers and
dialects, and can be used for the purpose of speaker augmen-
tation for speech synthesis. Our aim is to use the low-quality
data for speaker augmentation only, and we assume that tar-
get speaker data is limited but recorded in high-quality studios.
This is different from previous work, which uses low-quality
recordings for speaker adaptation [10, 11, 12] and multi-speaker
modeling (e.g. [22]).

However, such ASR data does not meet our high-quality
recording standards. It may contain background noise and
reverberation unlike typical TTS data recorded in anechoeic
chambers. Furthermore, unlike artificial speaker augmentation,
it also increases the number of different dialects included in
the training database. We therefore modify two parts of our
Tacotron TTS that use neural speaker embeddings to explicitly
handle the two factors, channel and dialect, brought by low-
quality data for speaker augmentation as shown in Figure 1.

Channel-aware postnet: The first revision is to make
Tacotron’s postnet dependent on channel information. Here,
the channel means all of recording equipment, noise, and re-
verberation. We simply use a one-hot channel label that indi-
cates which dataset each utterance comes from during training.
This channel label is input to each convolution layer of the post-
net, which controls shaping and enhancement of the spectrum
predicted by Tacotron’s decoder. Then, at synthesis time, we
choose the highest-quality channel setting (VCTK) which will
allow the model to produce speech with both a better speaker
representation as well as high audio quality. This idea is rele-
vant to [11, 12] wherein the channel factor is used to condition
the decoder. In our idea, we view Tacotron as a speech produc-
tion model and re-interpret its postnet as a channel model.

Dialect encoder network and neural dialect embeddings:
The second revision is to make Tacotron’s encoder dependent
on the dialect of target speakers included in training and adapta-
tion data.2 We aim to use either a common phone set or charac-

2Here dialect means English varieties. In traditional TTS, a lexicon

Table 1: Number of speakers in training, validation and test sets

Models Data type Train Dev Test

Baseline VCTK 100 4 4

Baseline VCTK 100 4 4
+artificial VTLP 200 8 -

Baseline VCTK 100 4 4
+low-quality non-TTS 200 8 -

ter input for all speakers, and factorise Tacotron’s encoder based
on neural dialect embedding vectors, computed from audio sig-
nals. Dialect identification can be considered as a subtask of
spoken language recognition, and in general, approaches from
speaker recognition tasks can be directly transferred to dialect
identification, see [24, 25, 26, 27]. Therefore, similar to our
speaker encoder network, we reused the Learnable Dictionary
Encoding (LDE) [28] based network architecture for our dialect
encoder network. For more details, refer to Section 2 of [9].

3. Experiments
3.1. Setup
We use two baseline models, a phoneme-based model which is
the same as the best system from our prior work [9], and one
with character input. 4 speakers are held out as validation data
and 4 speakers are held out as the test set. 80-dimensional mel
spectrograms that are output from Tacotron are converted to 16
kHz waveforms using WaveNets [29] that were trained on the
same VCTK training set. Details of the setup can be found in
Section 3 and 4 of [9], and code is available online3.

3.2. Artificial speaker augmentation
We created an augmented VCTK dataset by speeding up and
slowing down the speech of each original VCTK speaker as de-
scribed in Section 2.1 and giving them unique speaker identi-
ties, resulting in three times as many “speakers” as in the orig-
inal dataset. Then, we trained both character-based and phone-
based models in the same manner as our baselines except using
the larger augmented dataset.

3.3. Speaker augmentation using low-quality ASR corpora
We create a large mixed dataset for TTS training using both
VCTK and a variety of corpora collected for ASR, which con-
tain a variety of recording conditions and English dialects.
While we hold out some portion of each corpus for validation
and test, we focus our actual evaluation on VCTK speakers.
Once again we train both character-input and phone-input mod-
els. We used standard train/validation/test sets where they were
defined, as well as predefined adaptation utterances or utter-
ances that were common across speakers for extracting speaker
embeddings. We kept the number of training speakers the same
as in the artificially-augmented VCTK set. Two speakers were
chosen per corpus to add to our development set for the pur-
poses of preliminary model evaluation and selection. Below, we
briefly describe the four ASR corpora used in our multi-speaker
TTS training (with info about number of speakers in Table 1):

GRID [30]: This corpus consists of 32 English speakers (15
training set speakers) speaking English, Scottish, and Jamaican
dialects. Sentences are all of the form “place green at B 4 now.”
While all sentences are technically unique, they are each very
similar (many only varying by one word) and the vocabulary is
small. There are 1000 utterances per speaker. Audio is 16 bit

and phone set for different dialects are manually prepared [23].
3https://github.com/nii-yamagishilab/multi-speaker-tacotron
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Table 2: 5 best dialect embeddings (DE) for phone- and
character-based TTS. Number of dimensions, mean-only (m) or
mean and standard deviation (m,s) pooling, and the number of
dictionary components in the pooling layer are shown.

Phone Char
dim pl dc dim pl dc

DE1 256 m,s 32 128 m,s 32
DE2 256 m 64 256 m 32
DE3 256 m,s 64 32 m,s 64
DE4 32 m,s 64 512 m,s 32
DE5 64 m 64 64 m,s 32

and 50 kHz. Some recordings contain small amounts of back-
ground noise such as mouse clicks.

WSJ1 [31]: Wall Street Journal read by speakers of various
American English dialects. Audio is 16 bit at a 16kHz sam-
pling rate. We used the first 50 of the 200 ‘si tr s’ training set
speakers, who each have around 200 utterances.

WSJCAM [32]: Wall Street Journal sentences read by speakers
of various British English dialects. Audio is 16 bit at a 16kHz
sampling rate. We used 85 of the 96 training speakers, who each
read about 110 sentences. Recordings contain loud audible line
noise and reverberation.

TIMIT [33]: Speakers of eight American English dialects each
read ten phonetically-rich sentences. We picked 50 of the 462
training speakers, balancing for gender and dialect. Audio is 16
bit at a 16kHz sampling rate.

3.4. Modeling channel and dialect factors
Ground-truth channel labels: In addition to training directly
by mixing VCTK with the four new ASR corpora, we also
trained phone and character models provided with ground-truth
channel labels. We used a one-hot encoding indicating which
corpus each training utterance comes from4, and channel labels
are input to the Tacotron postnet.

LDE-based neural dialect embeddings: Given our goal of
modeling English dialects only, using the standard NIST LRE
recipe is not ideal5. We opted to use the ATR dialect cor-
pus6 with six English dialects: Australian, British and various
American English. Read and spontaneous speech recordings
are sampled such that they are balanced for training. Our di-
alect encoder network is based on LDE, and we performed a
hyper-parameter sweep. Similar to the speaker embeddings in
[9], we computed the cosine-similarity scores between dialect
embeddings of the synthesized and ground-truth speech7, and
accordingly selected five best embeddings each for phone and
character models. Details of these embeddings are in Table 2.

Warm-start training strategy8: We adopted a warm-start
training scheme, in which the full Tacotron training is bro-
ken down to four phases (see Figure 2) where the parameters
in each phase are initialized from that of previous phase. In
Phase 0, a seed single-speaker Tacotron2 is trained on the Nancy
dataset from Blizzard 2011 [34]. In Phase 1, we trained a multi-
speaker gender-dependent model on 5 corpora (VCTK + ASR),

4In addition to the one-hot code, we also tried a binary code sim-
ply representing TTS data (VCTK) or not (all other corpora), but this
resulted in worse development set alignment error rates.

5https://github.com/kaldi-asr/kaldi/tree/master/egs/lre07
6https://www.atr-p.com/products/sdb.html
7We want to emphasize that our strategy is not optimal, and a

strong assumption we imposed here is that the cosine-similarity and
speaker/dialect distributions is a one-to-one mapping.

8We found this strategy effective, as it produces better synthesis
quality and reduces training time.
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Figure 2: Illustration of the warmstart training strategy for our
Tacotrons (w/o a WaveNet) in this work. Green denotes the pre-
trained components, Yellow denotes end-to-end training, and
Blue denotes the training data.

with parameters initialized from the previous step, and included
speaker embeddings extracted from a separately-trained LDE
model with mean pooling and angular softmax, trained on Vox-
Celeb [35, 36]. These embeddings are concatenated with the
encoder output and input to the attention mechanisms, as well
as input to the prenet to the decoder [9]. In Phase 2, we added
channel labels. In Phase 3, finally, using one of the top 5 dialect
embeddings for phone or character models, we continued train-
ing with all five corpora, channel labels, and speaker and dialect
embeddings. Each phase is trained until convergence.

3.5. Subjective evaluation setup

We conducted a crowdsourced online listening test with native
English listeners. We asked listeners to rate each sample on a
mean opinion score (MOS) scale of 1-5 for naturalness and on
a differential MOS (DMOS) scale of 1-5 for speaker similar-
ity compared to a ground truth sample from the target speaker.
We also asked listeners to provide a categorical opinion about
dialect from six choices: American, Canadian, English, Irish,
Northern Irish, and Scottish. Since listeners may be unfamil-
iar with these accents, we also provided reference samples of
each accent from VCTK speakers who were not included in the
test, on a separate webpage that listeners may optionally refer
to. We evaluated 20 different systems: natural speech, vocoded
speech using WaveNet, phone and character baselines, VTLP-
augmented models, models trained with additional ASR data for
a total of 5 training corpora (5c), models with 5c and channel la-
bel (CL), and models with 5c + CL + dialect embeddings (DE).
For each system, we generated 20 samples using text that was
unseen during training from each of 4 VCTK training set (seen)
speakers, 4 development set speakers, and 4 test set speakers
(completely unseen). We grouped samples into sets of of 40 ut-
terances each, and had 5 different listeners evaluate each set. A
total of 60 listeners completed the test, rating 10 sets each.

Metric for evaluating dialect confusion: Since dialect ID can
be a challenging task even for native listeners, we evaluated
confusion matrices of true vs. guessed accents. We computed
Frobenius distance [37, 38] between the confusion matrix for
dialects of natural speech and those for each TTS system, based
on the idea that if a confusion matrix for TTS is similar to the
one for natural speech, then accents are well-represented.
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Table 3: Results: MOS and DMOS on a scale of 1-5 for seen
(train) and unseen (dev and test) speakers. Synthesis was done
using unseen texts. Here, 5c denotes the 5 training corpora
(VCTK + 4 ASR), CL denotes channel label, and DE{1..5} de-
notes the 5 best dialect embeddings for char and phone models.
Significant improvements over the baseline are highlighted in
red, and significantly worse systems are in blue.

Naturalness Speaker Similarity
system train dev test train dev test

natural 4.5 4.4 4.5 4.6 4.5 4.5

vocoded 4.2 4.2 4.3 4.1 3.9 4.0

phone baseline 3.6 3.7 4.0 3.7 2.0 2.7
phone VTLP 3.7 3.7 4.0 3.6 2.1 2.7
phone 5c 3.8 3.5 3.7 3.4 2.1 2.6
phone 5c+CL 3.7 3.7 3.9 3.5 2.0 2.5
phone 5c+CL+DE1 2.4 2.4 2.5 3.2 2.3 2.4
phone 5c+CL+DE2 2.5 2.4 2.5 3.3 2.2 2.6
phone 5c+CL+DE3 3.9 3.7 3.9 3.6 2.1 2.6
phone 5c+CL+DE4 1.1 1.1 1.1 2.8 2.4 2.5
phone 5c+CL+DE5 3.9 3.7 3.8 3.4 2.0 2.6

char baseline 3.7 3.7 3.9 3.6 1.9 2.8
char VTLP 3.8 3.6 3.9 3.5 2.1 2.5
char 5c 3.7 3.5 3.7 3.3 2.0 2.6
char 5c+CL 3.8 3.8 3.9 3.6 2.1 2.6
char 5c+CL+DE1 2.5 2.5 2.5 3.3 2.1 2.5
char 5c+CL+DE2 4.0 3.7 4.0 3.6 2.0 2.5
char 5c+CL+DE3 3.9 3.4 3.8 3.6 2.1 2.4
char 5c+CL+DE4 4.0 3.7 3.9 3.6 2.1 2.5
char 5c+CL+DE5 3.9 3.8 3.9 3.5 2.0 2.6

3.6. Subjective evaluation results and analysis
MOS and DMOS results are presented in Table 3. Statistical
significances were measured using the Mann-Whitney U test
at a threshold of p=0.01, and systems are compared with their
respective baselines, i.e. phone or character. Significantly better
and worse systems are highlighted in red and blue, respectively.

A) Baseline vs. speaker augmentation: The MOS and DMOS
results show an unexpected but interesting tendency. Contrary
to our initial expectation, we obtained statistically significant
improvements for naturalness of seen speakers when the low-
quality data, both channel-aware postnet, and dialect-aware en-
coder are all used for Tacotron training. This is surprising in two
ways. First, speaker augmentation contributes to naturalness
rather than speaker similarity. Second, adding low-quality data
paradoxically resulted in improved quality of synthetic speech
for seen speakers. This is somewhat surprising, but this phe-
nomenon has been clearly confirmed for 2 phone-based systems
and 4 character-based systems. MOS scores for the phone and
character systems have been increased from 3.6 to 3.9 and from
3.7 to 4.0, respectively. Speaker similarity of the development
set speakers was also improved from 2.0 to 2.4 for some of the
phone-based systems. We may speculate that the addition of di-
alect modeling and a larger variety of different speakers helps
to capture important aspects of speech, but that overfitting to
speakers seen during training is still taking place.

B) Artificial vs. low-quality data: Next, we see that VTLP
(artificial speaker augmentation) did not improve naturalness or
speaker similarity, although it is known that this method works
well in other tasks. On the other hand, mixing non-ideal data
carelessly does worsen results: we see that simply mixing low-
quality data produces significantly worse results in some cases,
and that adding the channel-aware postnet only shows improve-
ment when combined with dialect embeddings. This indicates
that we need to handle both channel and dialect factors properly.

C) Impacts of dialect encoders: One implication from Table 3
is that the effect of different types of dialect encoders on synthe-
sis is unclear and including them does not consistently improve

Table 4: Frobenius distance results for dialects of seen (train)
and unseen (dev and test) speakers, compared to confusion ma-
trices for dialects of natural speech. Distances smaller than
baseline are highlighted in red, with best result per category in
bold. Distances larger than baseline are highlighted in blue.

Dialect confusion
system train dev test

vocoded 0.06 0.32 0.32

phone baseline 0.20 1.06 1.12
phone VTLP 0.31 0.86 1.20
phone 5c 0.19 0.93 0.93
phone 5c+CL 0.19 0.84 0.99
phone 5c+CL+DE1 0.42 0.84 0.88
phone 5c+CL+DE2 0.34 0.95 0.81
phone 5c+CL+DE3 0.13 0.93 0.95
phone 5c+CL+DE4 0.44 0.88 0.90
phone 5c+CL+DE5 0.20 0.92 0.79
char baseline 0.25 0.96 0.86
char VTLP 0.12 1.00 1.17
char 5c 0.25 0.96 0.86
char 5c+CL 0.25 0.86 0.79
char 5c+CL+DE1 0.41 0.91 0.83
char 5c+CL+DE2 0.17 0.92 1.33
char 5c+CL+DE3 0.18 0.92 1.02
char 5c+CL+DE4 0.21 0.91 1.15
char 5c+CL+DE5 0.22 1.02 1.08

naturalness and speaker similarity. However, they do appear to
be necessary for better dialect modeling (see Table 4).

D) Dialect identification and confusion: Frobenius distances
representing confusions of perceived dialects are shown in Ta-
ble 4. The Frobenius distance means how similar confusion ma-
trices of perceived dialects of synthetic speech are compared to
those of natural speech. We observed relative improvements for
unseen speakers (dev and test). All phone-based systems using
the low-quality data have smaller Frobenius distances than the
baseline system for unseen speakers. This means adding low-
quality data helps our synthesizers generate appropriate phones
better and to better match dialects correctly with respect to lis-
teners’ perception. It also helps some of the character-based
systems to use channel-aware postnet and the dialect-aware en-
coder. On the other hand, we see that unseen speakers (dev and
test) have much larger Frobenius distances compared to seen
speakers, even for vocoded speech. This tendency is consistent
with speaker similarity judgements in Table 3.

4. Conclusions
In this paper we investigated two realistic speaker augmentation
scenarios for multi-speaker end-to-end speech synthesis: artifi-
cial augmentation and the use of non-ideal low-quality data. We
revised the postnet and encoder of Tacotron to support channel
and dialect variations from the low-quality data. Experimental
results revealed that using low-quality data with various English
accents is an effective data augmentation method for multi-
speaker end-to-end speech synthesis. Contrary to our initial
expectations, naturalness of seen speakers has been improved
and listeners’ ratings of perceived dialects are better matched to
natural speech for unseen speakers. Our results suggest that im-
proving speaker similarity still remains a challenge, and future
work includes the use of large low-quality databases for training
an initial seed model and fine-tuning it to a high-quality corpus.
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