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Abstract

Accurate pronunciation is an essential requirement for text-
to-speech (TTS) systems. Systems trained on raw text exhibit
pronunciation errors in output speech due to ambiguous letter-
to-sound relations. Without an intermediate phonemic represen-
tation, it is difficult to intervene and correct these errors. Re-
taining explicit control over pronunciation runs counter to the
current drive toward end-to-end (E2E) TTS using sequence-to-
sequence models. On the one hand, E2E TTS aims to eliminate
manual intervention, especially expert skill such as phonemic
transcription of words in a lexicon. On the other, a system mak-
ing difficult-to-correct pronunciation errors is of little practical
use. Some intervention is necessary. We explore the minimal
amount of linguistic features required to correct pronunciation
errors in an otherwise E2E TTS system that accepts graphemic
input. We use representation-mixing: within each sequence the
system accepts either graphemic and/or phonemic input. We
quantify how little training data needs to be phonemically la-
belled - that is, how small a lexicon must be written - to ensure
control over pronunciation. We find modest correction is possi-
ble with 500 phonemised word types from the LJ speech dataset
but correction works best when the majority of word types are
phonemised with syllable boundaries.
Index Terms: speech synthesis, representation mixing, pronun-
ciation control

1. Introduction
The ability to control pronunciation is necessary for text-to-
speech synthesis (TTS) in deployment. Predicting pronunci-
ations from text is often difficult for non-standard words like
numbers, abbreviations and homographs [1]. More broadly,
non-phonemic orthographies (as in English) cause pronuncia-
tion prediction to be unreliable.

Traditionally the ambiguities between text and acoustics are
tackled by creating a linguistic specification in the front-end.
The linguistic specification is an intermediate representation be-
tween text and acoustics that contains various levels of linguis-
tic features (phonetic, syllabic, syntactic, prosodic) to enable
pronunciation control. Examples of front-end packages include
Festival [2], Mary [3] and Sparrowhawk [4].

Developing front-end modules is expensive, especially the
pronunciation lexicon. For example, the creation of Unisyn
took an estimated 2 person-years [5]. Other available pronunci-
ation lexica for TTS include CMUdict [6] and Combilex [7].

The recent application of sequence-to-sequence modelling
(S2S) to TTS has enabled an end-to-end (E2E) paradigm. This
is where speech is predicted directly from text without the use of
a front-end or linguistic specification. Examples of such models
include [8, 9]. The prospect of TTS without a front-end has led
to a growing interest in the E2E paradigm, shown most recently

by the announcement of the open source ESPnet-TTS research
collaboration [10].

However, the need to control pronunciation of output
speech runs counter to the current drive towards E2E TTS. A
degree of intervention is necessary but should be kept to a min-
imum.

Motivated by the need to correct pronunciation in E2E TTS
systems, representation-mixing involves training on a mixture
of graphemes and phonemes, with each input word represented
either graphemically or phonemically [11, 12]. With the option
of using phoneme input, it becomes possible to control pronun-
ciations at test time without the need for a complete lexicon of
all words in the training data. However, previous research on
representation-mixing has not empirically studied the robust-
ness of phoneme correction, nor the quantity of phoneme la-
belling required.

In this paper, we quantify what the minimal phonemic inter-
vention during training should be for a working pronunciation
corrector in a Tacotron 2 model. We analyse 3 factors in pro-
nunciation correction: the number of word types in the training
data that are phonemically labelled, whether these word types
are selected according to their token frequency, and whether
coverage-based selection algorithms can reduce the amount of
phoneme labelling needed. Pronunciation correction perfor-
mance was evaluated by 2 expert linguists.

We find that from as little as 500 word types some correc-
tion is possible. As the number of word types labelled dur-
ing training increases the corrective ability improves. However,
100% accurate pronunciation correction is not possible under
representation-mixing. We also find that phoneme correction
models are made more robust if syllable boundaries are pro-
vided at both training and test time.

2. Linguistic Data
We trained all models using the LJ Speech corpus [13] compris-
ing ~24 hrs of audio from 13,100 sentences from 7 non-fiction
LibriVox books read by a single American female speaker. We
normalised numbers, ordinals, and monetary units and per-
formed only superficial text pre-processing: removing capital-
isation and expanding simple abbreviations such as ‘Dr.’. All
other non-standard words, such as acronyms, were not nor-
malised.

Training a representation-mixing model involves randomly
replacing a word’s graphemes with its phoneme sequence. We
obtain phoneme sequences from the Unilex pronunciation lex-
icon [5], as it has wider word type coverage (167,000 en-
tries) and better consistency than open source lexica such as
CMUdict [6], which contains entries of uncertain provenance.
Unilex uses the Unisyn set of 56 phones (55 of which are found
within LJ Speech), and includes both syllable stress and syllable
boundary information for each entry, e.g. the entry for ‘speech-

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-26184019



less’ is /s p ii ch 1 | lw @ s 0/, where digits encode syllable
stress and the ‘|’ symbol represents syllable boundaries.

3. Resource-limited Lexica
As noted earlier, a large lexicon is very expensive to create.
To investigate the limits of how well representation-mixing can
perform pronunciation correction, we designed a range of pro-
nunciation lexica differing in number and choice of entries.
Only the word types contained in a given lexicon are ever ran-
domly phonemicised during training of a system using that lex-
icon. Three reference lexica were designed as follows:

• grapheme-only: an empty lexicon; training a
representation-mixing model with this lexicon is equiv-
alent to training with grapheme-only input. This model was
used to determine which words are mispronounced by a
typical E2E TTS system.

• oracle-14: contains 14 word types, which is the smallest
possible lexicon that covers all 55 Unisyn phones that occur
in LJ Speech at least once. We use this lexicon to discover
whether full phoneme coverage is sufficient to enable pro-
nunciation control.

• full-13049: all 13,049 word types that co-occur in LJ
Speech and Unilex. This lexicon should have the best pos-
sible pronunciation correction ability.

We additionally devised 5 word type selection methods that
each lead to a lexicon of n entries. We compare models trained
with these lexica to determine the most effective size and con-
tents for a resource-limited lexicon. n can range from 0 to N
(here, N = 13049), and for any n2 > n1 the lexicon of size n1

is a strict subset of the lexicon of size n2.:

• rand-n: randomly selects n word types. These lexica help
us understand whether a naive selection method can outper-
form more well-reasoned approaches.

• freq-n: selects the top n most frequently occurring word
types in LJ Speech. These lexica help answer whether choos-
ing to phonemise words that cover the most tokens during
training is the best approach.

• phone-n: greedily selects n frequently occurring word
types while also trying to achieve wide phoneme coverage.
We build these lexica using the greedy Algorithm 1 where
the units of concern are phoneme unigrams. This is an ora-
cle condition because it uses pronunciation information from
full-13049.

• bigram-n: identical to phone-n but uses character bi-
grams as the units of concern. These lexica help answer
whether wide coverage over graphemic contexts is a poten-
tial proxy for wide phoneme coverage and thus may result in
decent pronunciation performance. This is a realistic condi-
tion to contrast with the previous one.

• trigram-n: identical to bigram-n but uses character tri-
grams as the units of concern.

Alongside Algorithm 1 we use a simple score in Equation 1 to
build the phone-n, bigram-n and trigram-n lexica. The
score weights between frequency and linguistic unit coverage.
The score for word type wi is the frequency of wi in the speech
corpus multiplied by the number of its units that overlap with
the current set of unseen units.

scorei = freqi × num_overlapping_units (1)

Algorithm 1 Builds a lexicon containing n word types by con-
sidering linguistic unit coverage
entries ← empty_set()
candidate_words ← all_wordtypes_in_lexicon()
unseen_units ← all_units()
while len(entries) < n do

while len(unseen_units) > 0 do
num_unseen_units ← len(unseen_units)
scores ← score(candidate_words, unseen_units)
best_word ← max(candidate_words, scores)
entries.add(best_word)
candidate_words.remove(best_word)
unseen_units.remove(get_units(best_word))
if len(entries) = n then

return entries
end if
if len(unseen_units) = num_unseen_units then

unseen_units ← all_units()
end if

end while
unseen_units ← all_units()

end while
return entries

4. Experiments
We closely followed the representation-mixing training ap-
proach detailed in [12]. During training, the graphemes of a
word in the input can be randomly replaced by its phoneme
sequence. This occurs at a fixed mixture probability of pmix

only for words in the lexicon being used. We used pmix = 0.5
in all experiments. We implemented representation-mixing on
top of a Tacotron 2 [8] implementation [14]. The Tacotron 2
model predicts mel-spectrogram frames, from which we use
WaveRNN [15] (a single model trained on the LJ Speech cor-
pus is used in all systems) to generate waveforms. Each model
is trained on a single Nvidia GTX 1080, with a batch size of 32,
learning rate of 0.001 and 350,000 total training steps stopping
criterion.

We trained one model for each reference lexicon de-
scribed in Section 3 – grapheme-only, oracle-14,
full-13049 – and one model for each combina-
tion of word type selection method and value of n in
{500, 2000, 4000, 6000}, for a total of 23 models.

5 supplemental models were trained using the
full-13049 lexicon to answer further questions not
related to lexica size or composition:

• mixprob-up and mixprob-down: linearly vary pmix

so that it depends on the frequency rank of the word.
mixprob-up phonemicises the most common word in
LJ Speech with pmix = 0.5, and the least common
word with pmix = 0.9. These values are swapped for
mixprob-down. These models help investigate whether
phonemicising the most frequent or the least frequent words
more often can be beneficial for pronunciation correction.

• stress, syllable and stress-syllable: these
models additionally include a word’s stress and/or syllable
information when it is phonemicised during training. These
models help investigate whether additional linguistic markup
aids pronunciation correction.

After training all the models we then use them to generate our
3 sets of test stimuli1. Table 1 shows how many tokens in LJ
Speech are covered by each lexicon (expressed as a percentage
of the tokens covered by full-13049) and therefore could be
randomly phonemicised during training.

1Samples available at jonojace.github.io/IS20-repmixing-limits
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Table 1: Number of word tokens in LJ Speech covered by
each resource-limited lexicon expressed as a percentage of
the 223179 tokens covered by full-13049. Additionally:
oracle-14 covers 41 tokens (0.018% of full-13049).

n 500 2000 4000 6000

rand 3% 19% 43% 56%
freq 69% 86% 93% 96%
bigram 55% 75% 85% 90%
trigram 44% 49% 65% 72%
phone 66% 81% 90% 94%

5. Evaluation
We developed 3 sets of words, each carried in the sentence
"Now we will say ... again." as test stimuli. Each set helps
answer a specific question regarding all models:

In-LJ: Phonemic sequences for 50 words that occur in LJ
Speech but were never phonemicised during training, and are
mispronounced by the baseline grapheme-only model: de-
spite being in the training data, they are surprisingly still mis-
pronounced when represented as graphemes. This set investi-
gates which models offer effective phoneme correction for this
category of unexpected mispronunciations.

Out-LJ: Phonemic sequences for 50 words that do not
occur in LJ Speech, and are mispronounced by the baseline
grapheme-only model. These represent the key challenge
of generalising to words without spoken examples.

Phonemicised: Grapheme sequences for 50 words that oc-
cur in LJ Speech, were phonemicised, and are pronounced cor-
rectly by the baseline grapheme-only model. This test set
checks that representation-mixed training preserves correct out-
put from the grapheme-only case.

Judgements of pronunciation correctness require care-
ful listening because errors are not simply a matter of a
categorically-different phone being produced but can be subtle
and ambiguous. Therefore, we use expert listeners.

We obfuscated the above stimuli and presented them in ran-
dom order to two expert listeners who independently judged
whether each test word was pronounced correctly. The listeners
had available to them the intended pronunciation for each stim-
ulus. In cases of disagreement, they discussed and re-listened
to reach an agreement.

6. Results
Figure 1 visualises the experimental results.

6.1. Overall Observations

First and foremost we observe that 100% correct pronunciation
control is not yet possible with representation-mixing models
as described in [12]. Even the topline lexicon full-13049
achieves a far from perfect score of 38/50 over Out-LJ.

The number of word tokens phonemicised during training
is not the sole factor that determines performance, especially
for the most important test set: Out-LJ. In other words, the
freq-n lexica, which cover the most tokens for any given
n (Table 1), do not lead to the best pronunciation correction.
Rather, the choice of word types in the lexicon matters more.

Figure 1 also shows a trend across all lexica that increasing
size (n) results in better performance over both test sets, which
is likely to be simply a result of a greater number and variety

of phonemicised word tokens mixed in during training. The
results for oracle-14 support this hypothesis: oracle-14
phonemicises only 41 tokens during training, and is unable to
perform pronunciation control to any degree, with scores of 0 on
both In-LJ and Out-LJ (not shown in Figure 1) with even the
14 word types seen during training pronounced incorrectly. It
is not sufficient to see each phoneme just a few times in limited
contexts to achieve control over pronunciation.

There are a few exceptions to this trend. The performance
of rand-n, freq-n, and phone-n can fall as n grows: per-
formance from rand-2000 to rand-4000, freq-4000 to
freq-6000, and phone-4000 to phone-6000, demon-
strate this. Naively using more resources to increase the size
of the lexicon doesn’t necessarily result in better pronunciation
performance. bigram-n and trigram-n do not exhibit this
behaviour, which suggests that the lexicon should contain word
types that cover a wide range of grapheme-phoneme contexts.
Both bigram-n and trigram-n – which are both possible
in a real application – do this nearly as well as phone-n –
which, as noted earlier, is an oracle setting.

As expected, performance on In-LJ (words that occur in
the LJ Speech training audio) is better than on Out-LJ.

6.2. Comparison of Lexicon Selection Methods

rand-n occasionally outperforms other methods despite cov-
ering far fewer tokens in LJ Speech (Table 1): compare
rand-500 with phone-500, or compare rand-6000 with
all other n = 6000 models. Generally however, rand-n per-
forms worse than the other methods when n ≤ 4000, this along
with the fact that rand-n isn’t a principled or predictable word
type selection method means we cannot recommend it over the
other methods, especially when resources are scarce.

phone-n performs the best for n of either 2000 or 4000,
suggesting that a lexicon with balanced phoneme coverage is
important. phone-6000 has surprisingly poor performance
and we do not have an explanation for this anomalous result.
phone-500 also has surprisingly poor performance. A poten-
tial reason could be that Algorithm 1 takes only 41 words to
cover all phoneme unigrams once, 313 words to cover all bi-
grams once, and 2196 words to cover all trigrams once. Thus,
choosing wordtypes by bigram or trigram coverage will tend to
select word types with a greater variety of spellings while car-
ing less about token frequency than when covering phoneme
unigrams. Greater spelling variety will correspond to greater
phonemic context variety, which may be better for Out-LJ per-
formance. Since phone-n is an oracle setting in which an
existing large lexicon is required, it is only intended to provide
points of comparison with the other methods.

freq-n, bigram-n and trigram-n are, in contrast,
all feasible in a real limited-resource use case. The simplest
method freq-n offers poor performance for Out-LJ for all
n. trigram-n almost always outperforms bigram-n. The
clear conclusion is that a greater variety of grapheme sequences
(i.e., spellings) in the lexicon leads to better pronunciation
correction performance, as spelling variety will correlate with
phoneme context variety.

In summary, considering all of the above results, we rec-
ommend the use of the trigram-n lexicon selection method
when resources are limited. It offers better pronunciation con-
trol than any other method for a lexicon with 500 entries
(trigram-500), falling not far short of the full-13049
lexicon, despite being less than 4% of the size (i.e., 25 times
cheaper to create).
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Figure 1: Listening test results of models trained using resource-limited lexica generated by the word type selection methods.

6.3. Additional Experiments

The results above indicate that trigram-n is the recom-
mended method for creating a lexicon from scratch. In addi-
tional experiments, we used the supplemental models listed in
Section 4 to explore two further questions.

6.3.1. Probability of phonemicisation during training

Results for mixprob-up (In-LJ:47/50, Out-LJ:42/50)
demonstrate that phonemicising lower frequency words with
a higher pmix during training slightly improves pronunciation
control for Out-LJ words, compared to the uniform pmix =
0.5 across all word types used in the full-13049 results
above. We presume this is because low-frequency words will
tend to have more variety in their spelling and/or phoneme
sequences, which we know to be beneficial from the results
for trigram-n and phone-n respectively. Results for
mixprob-down (In-LJ:48/50, Out-LJ:39/50) are very sim-
ilar to full-13049: phonemicising higher frequency words
more often has no benefit.

6.3.2. Use of syllable information

syllable is the best-performing across all results (In-
LJ:47/50, Out-LJ:48/50), correctly pronouncing 10 more OOV
words than the topline reference full-13049. To under-
stand the types of words that syllable was able to pro-
nounce correctly because it exploits syllable boundary infor-
mation, we analysed the 7 words (input as phoneme sequences)
that syllable pronounces correctly with syllable informa-
tion, full-13049 pronounces incorrectly, and syllable
pronounces incorrectly when syllable information is absent.
These words are almost all morphological compounds contain-
ing a stop (e.g., /t/) and then /h/ occurring across the syllable
boundary: goatherd /g ou t | h @@r r d/, loophole /l uu p | h ou
lw/, upheld /uh p | h e lw d/, coathanger /k ou t | h a ng | @r r/,
plothole /p l aa t | h ou lw/, plughole /p l uh g | h ou lw/, funghi
/f uh ng | g ii/. When these words are pronounced incorrectly
by full-13049, the error occurs over the syllable boundary.
For example /l uu p h ou lw/ is mispronounced as /l uu f ou lw/.

Further inspection of the full-13049 lexicon reveals a
potential reason why words containing a stop followed by /h/
are mispronounced without the use of syllable boundaries. The
phoneme /h/ occurs mid-word in just 101 word types and only
occurs after a stop in 10 of those. These word types have very
low token frequencies in LJ Speech, ranging from 1 to 4, which
add up to insufficient examples for the model to learn how to

correctly pronounce this voiceless glottal fricative mid-word af-
ter a stop. Syllable boundary information resolves these cases
presumably because they help the model learn to generalise
from /h/’s following non-stops to /h/’s following stops.

stress did not lead to improved performance. It
is worse (In-LJ:31/50, Out-LJ:33/50) than full-13049.
stress-syllable (In-LJ:46/50, Out-LJ:45/50) is also in-
ferior to syllable. In contrast to syllable information, lexical
stress information is not beneficial to pronunciation control.

Most models correctly pronounced 47-50 of the words in
the Phonemicised test set (Section 5). That is, representation-
mixing doesn’t negatively impact pronunciations that a
grapheme-only model already pronounces correctly.

Another potential application of representation-mixing
models is to control pronunciations within the grapheme rep-
resentation of a word, making pronunciation correction more
accessible to non-expert users. For example, correcting the
mispronunciation at the morpheme boundary in ‘loophole’ by
inputting ‘loo/p | h/ole’, or controlling the pronunciation of
the first vowel in the homograph ‘gala’ by inputting ‘g/aa/la’
(UK) or ‘g/ei/la’ (US). We generated various such samples from
syllable, and informally confirmed that this type of correc-
tion is indeed possible despite graphemes and phones never be-
ing mixed within words during training.

7. Conclusions
This paper shows that representation-mixing models cannot
with 100% accuracy correct pronunciations by using phoneme
inputs, even when the majority of word types are phonemicised
during training by a large pronunciation lexicon. Subsequently
future work should look to improve on this result. Despite this,
they still control pronunciations relatively well, and we demon-
strate via an exploration of principled word type selection meth-
ods that performance remains competitive even when using
resource-limited lexica as small as just 500 entries. Thus this
makes representation-mixing a cost-effective paradigm for cor-
recting mispronunciations made by E2E TTS systems, which is
of the upmost importance in low-resource scenarios.

Our experiments show that when developing a lexicon for
a representation-mixing TTS system, choosing to phonemically
transcribe word types based solely on the number of tokens they
cover in the speech corpus is not optimal for pronunciation cor-
rection. Instead the choice of word types is also important. Our
results indicate that choosing words with rich graphemic con-
text helps greatly, possibly as rich graphemic context is a proxy
for rich phonemic context.
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