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Abstract
High-fidelity speech can be synthesized by end-to-end text-to-
speech models in recent years. However, accessing and con-
trolling speech attributes such as speaker identity, prosody, and
emotion in a text-to-speech system remains a challenge. This
paper presents a system involving feedback constraints for mul-
tispeaker speech synthesis. We manage to enhance the knowl-
edge transfer from the speaker verification to the speech synthe-
sis by engaging the speaker verification network. The constraint
is taken by an added loss related to the speaker identity, which is
centralized to improve the speaker similarity between the syn-
thesized speech and its natural reference audio. The model is
trained and evaluated on publicly available datasets. Experi-
mental results, including visualization on speaker embedding
space, show significant improvement in terms of speaker iden-
tity cloning in the spectrogram level. In addition, synthesized
samples are available online for listening. 1

Index Terms: Text-to-speech, multi-speaker speech synthesis,
speaker embedding, end-to-end

1. Introduction
Speech synthesis, also known as text-to-speech (TTS), specifies
the technique that achieves the transformation from text to audio
waveform. It has been widely used in our daily life, e.g., navi-
gation systems, audiobooks, and virtual assistants. The perfor-
mance of the TTS system has been further improved recently by
adopting the end-to-end neural network framework [1, 2, 3, 4].
The end-to-end principle is applied in the TTS model by a cohe-
sive and autoregressive chain of neural network structures that
are connected by well-defined input-output features. For in-
stance, the state-of-the-art system Tacotron2 [2] consists of an
encoder-decoder architecture and a neural vocoder Wavenet[5].

Extensions on these models have been developed for allow-
ing the TTS system to control the speech characteristics. These
extensions are able to enrich the expressiveness of the synthe-
sized voice and further enhance the robustness of TTS systems.
For example, Yuxuan Wang et al. proposed the style tokens
to uncover the latent space regarding speech attributes that are
hard to define and label [6, 7]. The models are jointly trained
with the Tacotron-based TTS architecture in an unsupervised
manner. On the other hand, controlling speech attributes that
have easily found labels (e.g., language, emotion, and speaker
identity) have also been investigated [8, 9, 10]. Typically, the
speech attribute is controlled with a TTS model by conditioning
the synthesizer with the vector representation called embedding.

The multispeaker TTS system is one of the extensions,
which is developed to clone and manage distinct voices either
seen or not seen during training. Most systems use the speaker

1https://caizexin.github.io/mlspk-syn-samples/index.html

embedding to characterize the expected voice and speaking
style in the multispeaker TTS system [10, 11, 12], while speaker
adaptation can also be used for speaker transfer TTS model-
ing [13]. Voice cloning by speaker adaptation acquires more
data and computational resource for the target voice and usu-
ally is less robust compared with cloning by speaker embedding
[14]. The speaker verification system plays an essential role in
the multispeaker TTS system for cloning unseen voices. Eliya
Nachmani et al. has proposed an approach where the speaker
verification system and the synthesizer are jointly trained [15].
However, the knowledge for discriminative speaker representa-
tions is limited by the training dataset in this case. Then Ye
Jia et al. further investigated the knowledge transfer in terms
of speaker characteristics by decoupling these two tasks, where
the speaker verification network is trained with a dataset that
contains a larger amount of speakers but is not suitable for TTS
training [10]. The discriminative speaker embedding extracted
from the speaker verification network is used for conditioning
the TTS synthesizer and leads to better performance on open-set
voice cloning.

Although the model proposed in [10] increases the robust-
ness of the synthesizer for open-set multispeaker synthesis, the
speaker’s similarity is not close between the synthesized speech
and the speaker’s natural speech. Concerning the same speaker,
the embeddings extracted from synthesized speech and those
extracted from natural speech may have two distinct distribu-
tions. To further transfer the knowledge from a speaker ver-
ification model to the speech synthesizer, we propose a mul-
tispeaker TTS model with the feedback constraint toward the
speaker embedding space. Specifically, an added score asso-
ciated with the speaker similarity is performed by the verifica-
tion network for forcing the synthesizer to derive the knowledge
for speaker identity cloning. The proposed method is evaluated
on publicly available datasets. As demonstrated in the visual-
ization of the embedding space, speaker embeddings extracted
from our synthesized speech lies in the same cluster as those
from natural speech. Therefore, the model may be useful for
data augmentation and the white-box spoofing attack toward
speaker verification in the future.

This paper is organized as follows: section 2 describes the
related works in terms of speaker verification and speech syn-
thesis. Our proposed system is presented in section 3. Exper-
imental setup and results are shown in section 4. Finally, we
conclude the paper in section 5.

2. Related works
2.1. Speaker verification

Open-set multispeaker TTS highly depends on speaker repre-
sentations for conditioning the synthesizer to copy the desired
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Figure 1: The overall training framework of deep speaker verification systems

voice. To that end, speaker verification systems, especially text-
independent systems, are often used for feature extraction re-
garding their discriminative speaker representations.

In the speaker verification field, deep speaker feature learn-
ing systems proposed in recent years have achieved compara-
ble performance or even surpassed the classical i-vector sys-
tems [16, 17, 18]. The overall training architecture of the deep
speaker verification system is shown in figure 1. Specifically,
the speaker verification model takes variable-length audio sig-
nal x = [x1, x2, x3...xn] as input and convert the signal into
frequency-domain acoustic features, e.g., filter-bank energy or
Mel frequency cepstral coefficients (MFCCs). Acoustic fea-
tures are then fed into a neural network-based extractor to obtain
the fixed dimensional speaker representation z ∈ Rd, where d
is the dimension of the speaker embedding. Note that the back-
end discriminator here in the training phase is different from
the one in the evaluation phase. The discriminator in the train-
ing phase is to classify embeddings according to their target
speaker labels in order to train a discriminative speaker embed-
ding space, while the one used in the evaluation phase is to ver-
ify if two embeddings come from the same speaker.

Among deep speaker embedding systems that are devel-
oped with various DNN architectures [17, 19, 20], we follow
the ResNet-based verification system [20] in our work for em-
bedding extraction to extract time-invariant speaker embedding.

2.2. Multispeaker speech synthesis

Cloning and controlling speech attributes have been studied for
decades in the text-to-speech (TTS) field. For voice synthe-
sis, Yamagishi et al. proposed feature-space adaptive training
for speaker-adaptive TTS [21]. The system aims to reduce the
size of data and the cost for building different voices when de-
veloping statistical parametric speech systems based on Hid-
den Markov models (HMMs). After Tacotron2 demonstrated
its ability to synthesize high-quality speech that can be as nat-
ural as human speech, extensions of Tacotron2 were proposed
for speech attribute cloning by conditioning the linguistic en-
coder output with attribute embeddings. For instance, Yuxuan
Wang et al. introduced global style tokens (GSTs) as the at-
tribute embeddings to achieve style-control TTS synthesis [6].
The proposed model in [6] , where GSTs are trained in an un-
supervised manner, also helps improve the speech intelligibility
when it is used for multispeaker TTS training.

On the other hand, in order to achieve zero-shot voice
cloning, the speaker representation is commonly extracted by
a separated model and used as the conditioned feature in mul-
tispeaker TTS models [10, 15]. In this case, the multispeaker
TTS model developed for zero-shot voice cloning consists of
two models, one for speaker embedding extraction and the other
for TTS conversion. When the two models are trained jointly,
the TTS system yields moderate performance in synthesizing
voices that are unseen in the training data [15]. The reason

might be because the datasets collected for speech synthesis
have limited speakers, and the datasets collected for speaker
analysis have no transcriptions for TTS training. Jia Ye et
al. chose to train the two models individually, where the TTS
model learns the speaker representation knowledge by the em-
bedding extracted from the speaker verification model [10].
This method improves the robustness with the ability to clone
unseen voices. However, two distinct clusters, representing syn-
thesized speech and natural speech from the same speaker, are
observed in the embedding space as shown in [10]. To further
investigate this problem and enhance the knowledge transfer,
we propose a model with a feedback constraint that engages
the speaker embedding extractor. We show that by showing
that embeddings from different speakers result in distinct dis-
tributions in the vector space, while embeddings from the same
speaker, whether synthesized or natural, lie in the same cluster.

In our work, we use a speaker embedding extractor that is
different from the model described in [10]. By the time we fi-
nalized our work, Erica et al. published a study investigating
how different speaker embedding networks affects the multi-
speaker synthesis system [22]. In that study, the author claim
that LDE-based embedding could improve speaker similarity
and naturalness. Our model has a similar speech encoder as
the learnable dictionary encoding-based (LDE-based) systems
described in [22].

3. Methods
Our proposed multispeaker TTS framework is shown in fig-
ure 2. We follow the baseline end-to-end speaker verification
system presented in [20] as our embedding extraction network.
The Mel-spectrogram is used as the acoustic feature for both
the speaker embedding extraction system and the multispeaker
TTS system. As for the speaker embedding network, ResNet34
architecture is used as the encoder network, followed by a pool-
ing layer that calculates the mean and the standard deviation
of encoder outputs. Then the speaker embedding is obtained by
concatenating the mean and the standard deviation. While in the
training phase, a back-end classification network consisting of
two fully connected layers maps embeddings to target speakers.

We use the tacotron-based model as the Mel-spectrogram
prediction model. The input character sequence is converted
into a vector sequence by a trainable lookup table. Then the
encoder, which consists of 5 convolutional layers and a bi-
directional long short-term memory (BLSTM) layer, consumes
the embedding sequence and delivers the memory that repre-
sents the context and linguistic characteristics of the input text.
Speaker embedding, extracted from the target audio signal, is
then concatenated with the encoder output memory globally as
the final encoding states.

The decoder takes steps to predict Mel-spectrograms with
three modules, which are the attention mechanism, the RNN de-
coder and the PostNet. The attention mechanism provides the
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Figure 2: Proposed multi-speaker speech synthesis model

context vector for the decoder RNN to generate spectrograms
that associate with specific encoder states for each decoding
time step. In addition, it provides soft alignment between the
input encoder states and the target Mel-spectrogram. For each
decoding step, the decoder RNN predicts the spectrogram with
respect to the context vector and the predicted result from the
previous time step, where the previous predicted frame is taken
by the PreNet module. Two linear projection layers are followed
by the decoder RNN for predicting Mel-spectrograms and stop
tokens, respectively. Stop tokens are the binary sequence that
specifies the valid decoding frames, where 0 denotes a valid
frame, and 1 indicates the end of the decoding process. The
PostNet takes the predicted Mel-spectrogram as input to obtain
the residual parameters that are related to future context since
the decoder RNN is unable to foresee future frames. The pre-
dicted Mel-spectrograms are finetuned with the PostNet, which
leads to high-quality outputs.

The speaker embedding network is engaged after the Post-
Net during the training phase. It is added as a feedback con-
straint to force the TTS model to learn the speaker variety
knowledge sufficiently so that the speaker characteristics ex-
tracted from synthesized Mel-spectrogram lays in the same dis-
tribution as those extracted from the natural speech from the
same person. In this case, the parameters of the speaker embed-
ding network are not updated during the training phase.

We use the cosine distance between the ground truth
speaker embedding and the one extracted from the predicted
Mel-spectrogram by speaker embedding network as one of the
loss functions for optimizing the TTS network. Other than that,
mean square error (MSE) between predicted Mel-spectrograms
and the ground truth spectrogram, classification loss of the stop
tokens, and the regularization loss for encoder-decoder param-
eters are applied to ensure correct predictions.

The Mel-spectrogram is converted back to the audio signal
by the neural vocoder WaveRNN [23], which is able to generate
high-quality speech at fast speed.

4. Experiments

We used four publicly available datasets for training and evalu-
ation. All data from Voxceleb1 [24] and Voxceleb2 [25], with
more than 7, 000 speakers, are used for training the speaker ver-
ification system. The VCTK English dataset [26], which con-
tains 109 speakers with various accents, is used for TTS model
training, while data from 8 speakers are randomly excluded as
the VCTK test set. For each speaker in the training set, 8 ut-
terances are randomly picked out as the VCTK validation set.
7 speakers from the Librispeech dataset [27] are randomly se-
lected as the cross-domain test set. All audios are downsampled
to 16 kHz in our experiments.
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VCTK test - naturalness

VCTK val - similarity

VCTK val - naturalness

Librispeech - similarity

Librispeech - naturalness
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Figure 3: Subjective preference result

We evaluate the performance by comparing the proposed
system, which has added feedback constraint (FC), with the
multispeaker TTS baseline system without FC. The two systems
are identified by ‘baseline’ and ‘FC’ in the following subjective
and objective results. We first trained the baseline model until it
can synthesize intelligible speech. Then the FC model is trained
from the pre-trained baseline model while engaging the speaker
embedding network. Both models are then trained to the same
total training steps with the same batch size.
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Figure 4: Speaker embedding visualization by t-SNE for the VCTK test set. (a) baseline & text-dependent speaker embedding; (b)
FC & text-dependent speaker embedding; (c) baseline & text-independent speaker embedding; (d) FC & text-independent speaker
embedding;

Table 1: Objective evaluation results

Systems SV-EER (%)
Dep / Indep

Average
cosine similarity

Dep / Indep

VCTK test
natural 1.76 -

baseline 14.72 / 13.18 0.403 / 0.333
FC 8.22 / 7.68 0.764 / 0.577

VCTK val
natural 1.61 -

baseline 9.22 / 8.23 0.472 / 0.394
FC 5.02 / 3.42 0.842 / 0.67

Librispeech
natural 5.26 -

baseline 26.84 / 26.46 0.222 / 0.139
FC 16.54 / 16.11 0.626 / 0.389

4.1. Subjective evaluation

We asked 12 people to choose their preferable speech for pairs
that contain speech synthesized by both systems. Audios in
each pair are synthesized with the same text content and the
conditioned embedding from the same reference audio. Each
person chose their preference concerning speaker similarity and
naturalness from 38 pairs, which are randomly selected from the
VCTK test set, the VCTK validation set, and the Librispeech
set. Preference results are shown in figure 3. For subjective
evaluation, the FC system outperforms the baseline system on
all three evaluation sets. For seen speakers in the training data,
the speech synthesized by both systems is close. Hence peo-
ple do not have a preferred choice for more than 50% pairs in
the VCTK validation set. Given these points, both systems can
copy seen voices well, while the FC system obtains better per-
formance on unseen voice cloning.

4.2. Objective evaluation

For each utterance from all evaluation datasets, we synthesized
speech according to the given transcript and the embedding ex-
tracted from the original speaker’s voice. Two different syn-
thesized results were collected for each utterance. Although
both are synthesized with the same reference voice, one is syn-
thesized based on the speaker embedding extracted from the
utterance that has the exact same content, while the other re-
sult is synthesized with the speaker embedding extracted from
a randomly selected utterance with different content. These are
identified as text-dependent (Dep) result and text-independent

(Indep) result in table 1. Speaker verification equal error rate
(SV-EER) is used to evaluate the speaker discrimination per-
formance for a set of embeddings. We randomly generate
enrollment-verification pairs for each experiment, where half
of the trials are cross-speaker pairs. We also compute the aver-
age cosine similarity between embeddings extracted from syn-
thesized speech and the ground truth embeddings to measure
the speaker similarity performance objectively. As shown in ta-
ble 1, the FC system obtains significantly lower EERs than the
baseline system on all evaluation sets, whether text-dependent
or text-independent. The FC system also has higher average co-
sine similarities than the baseline system. In either case, we can
conclude that the voice synthesized by the FC system is more
close to the reference voice than the baseline system. The simi-
larity is improved with the feedback constraint network.

Likewise, we can visualize the results from the embedding
space by the t-Distributed Stochastic Neighbor Embedding (t-
SNE), as shown in figure 4. The utterances synthesized by
the baseline system with reference embeddings from the same
speaker is in the same cluster, but do not have the same dis-
tribution with reference embeddings, even is closer to another
speaker. For example, as shown in figure 4 (a), embeddings
from ‘p225-syn’ have a distribution that is close to ‘p376-org’
other than its reference speaker ‘p225-org’. For the FC system,
the embeddings extracted from the same voice, either synthe-
sized or natural, lie in the same distribution in the embedding
space. Therefore, the synthesized voice is more close to the
original speaker for utterances synthesized by the FC system.

5. Conclusion
In this paper, a multispeaker TTS approach that explores the use
of a speaker verification system is presented. A trained speaker
verification system is incorporated into the TTS framework act-
ing as the feedback constraint to facilitate voice cloning. Ex-
perimental evaluations, including both subjective and objective
evaluations, demonstrate that our proposed system enhances the
knowledge transfer from speaker verification to speech synthe-
sis. Accordingly, our proposed method achieves significant im-
provement regarding voice cloning, which can be used for data
augmentation or white-box spoofing attack in the future.
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