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Abstract 

As stereophonic audio devices, such as smart speakers and 

cellphones, evolve to be daily essentials, stereophonic acoustic 

echo cancellation becomes more important for voice and audio 

applications. The cross-correlation between the far-end 

channels and the associated ambiguity in the estimated echo 

path transfer functions lead the misalignment and instability 

issues with conventional stereophonic acoustic echo cancellers 

(SAEC). In this paper, we propose a novel SAEC algorithm, 

which can better model the acoustic echo path between each 

loudspeaker and microphone. Specifically, filter adaptations are 

modeled independently by applying pre-whitening in solving 

the misalignment problem. Improvement in echo suppression 

capability is evaluated in terms of echo return loss 

enhancement(ERLE) and wakeup word detection accuracy. 

Index Terms: SAEC, misalignment, pre-whitening, wakeup 

word detection.  

1. Introduction 

As devices with stereo loudspeakers, e.g. smart speakers 

and cellphones, being widely deployed recently for both voice 

communication and human-machine interaction, stereophonic 

acoustic echo cancellation (SAEC) becomes a critical 

component of the voice enhancement system. Its echo 

cancellation performance has significant impact on the listening 

experience, wakeup word detection, and speech recognition. 

In the past decades, SAEC as well as its underlying 

misalignment problem have been investigated, e.g.[1-4], and 

various solutions have been proposed. The fundamental 

difficulty with SAEC is the high cross-correlation between the 

two playback channels, which is very common in practical 

usages. Since the adaptive filters (AF) employed by SAEC is 

adapted under the guidance of the final cancellation residual, 

such cross-correlation causes the AF not converging to the true 

echo path transfer functions even though the cancellation 

residual is temporarily small. As a result, when the cross-

correlation between the two far-end channels abruptly changes, 

significant echo leakage will be observed and it costs extra time 

for the AF algorithm to achieve another temporary convergence. 

Thus, in practice, SAEC algorithms usually suffer from the 

problem of slow convergence and/or repeated divergence-to-

reconvergence behavior. To tackle this problem, conventional 

SAEC solutions generally take two types of approaches: 1) 

modifying the far-end signals so that they are less correlated, 

e.g. [5][6]; 2) increasing the contribution of the decorrelated 

components in the preprocessed transmitted signals[7]. 3) 

exploiting the short-term variation of the cross-correlation, e.g. 

[2], which is available in most applications. Further, recent 

advances in deep learning literature has motivated the 

reformulation of SAEC as a supervised speech separation 

problem along with a DNN based solution[8][9]. 

Modifying far-end signal to be less correlated is usually 

achieved by either adding small amount of random noise or 

nonlinear processing on the far-end signals before sending them 

to the loudspeaker. Although the user perception degradation 

introduced by such modification is roughly controllable, this 

type of approach is still not preferred by many high-fidelity 

applications, including the music playback scenario of smart-

speakers. On the other hand, deep-learning based solutions 

showed promising echo suppression performance but their 

computational complexity is usually prohibitive for mobile and 

IOT devices. Further, such solutions are vulnerable to low 

signal-to-echo-ratio(SER) and its robustness highly relies on 

the availability of recorded data. 

In this paper, we will focus on exploiting the short-term 

variation of the correlation and a novel AF-based algorithm is 

proposed, which models the separate echo paths by applying 

pre-whitening process and independently updating each 

adaptive filter. Such improvement is achieved with a moderate 

cost of computational complexity. The algorithm’s echo 

cancellation performance is evaluated through real life data in 

terms of ERLE and wakeup word detection rate. 

2. Problem Formulation 

The problem is formulated in short time Fourier transform 

(STFT) domain, where l and k denote the time-frame index and 

the frequency-bin index, respectively. 

𝒅(𝑙, 𝑘) =  𝒔(𝑙, 𝑘) +  ∑ 𝒛𝑛(𝑙, 𝑘)𝑁
𝑛=1                 (1) 

Where d(l,k) denotes the microphone input signal that includes 

near-end signal s(l,k) and echo signal zn(l,k) from the n-th 

loudspeaker. Our frequency domain adaptive filtering（FDAF）
uses multidelay block NLMS[10-13], B indicates the block 

number: 

𝑼̂𝑛(𝑙, 𝑘) = [𝑼𝑛(𝑙, 𝑘), 𝑼𝑛(𝑙 − 1, 𝑘), … , 𝑼𝑛(𝑙 − 𝐵, 𝑘)]𝑇
   (2) 

𝑾̂𝑛(𝑙, 𝑘) = [𝑾𝑛(1, 𝑘), … , 𝑾𝑛(𝐵, 𝑘)]𝑇           (3) 

Where 𝑼̂𝑛(𝑙, 𝑘)  denotes far-end signal and 𝑾̂𝑛(𝑙, 𝑘)  denotes 

acoustic echo path transfer function. The general error-signal 

for SAEC system can be expressed by 

𝒆(𝑙, 𝑘) = 𝒅(𝑙, 𝑘) − ∑ 𝑾̂𝑛
𝐻(𝑙, 𝑘)𝑼̂𝑛(𝑙, 𝑘)2

𝑛=1        (4) 

The NLMS solution for this problem is: 

𝑾̂𝑛(𝑙 + 1, 𝑘) = 𝑾̂𝑛(𝑙, 𝑘) + 𝑑𝑖𝑎𝑔{𝒂̂𝑛}𝑼̂𝑛(𝑙, 𝑘)𝒆(𝑙, 𝑘)  (5) 
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𝒂̂𝑛(𝑙, 𝑘) = [𝒂𝑛(𝑙, 𝑘), … , 𝒂𝑛(𝑙 − 𝐵, 𝑘)]𝑇
              (6) 

Where 𝒂𝑛(𝑙, 𝑘) ≡
𝜇

𝐸‖𝑼𝑛(𝑙,𝑘)‖2+𝜖
, 𝜇 is the step size and 𝜖  is 

regularization factor. While a variable step-size is usually use, 

the derivation for it is beyond the scope of this paper. 

3. IEPM-based SAEC 

3.1. IEPM-based solution 

The proposed independent echo path modeling(IEPM) 

SAEC algorithm is modified from above mentioned fast block 

NLMS approach. The computation steps are listed in Table 1, 

where 0 is M-by-1 null vector. 

Table 1: The proposed IEPM SAEC Algorithm 

Computation Steps (For each new block of M input samples) 

Step 1) Filtering: 

𝑼𝑛(𝑙, 𝑘) = 𝑆𝑇𝐹𝑇{[𝒖𝑛(𝑙 ∗ 𝑀 − 𝑀 + 1), … , 𝒖𝑛(𝑙 ∗ 𝑀)]𝑇} 

𝑼̂𝑛(𝑙, 𝑘) = [𝑼𝑛(𝑙, 𝑘), 𝑼𝑛(𝑙 − 1, 𝑘), … , 𝑼𝑛(𝑙 − 𝐵, 𝑘)] 

𝑾̂𝑛(𝑙, 𝑘) = [𝑾𝑛(1, 𝑘), … , 𝑾𝑛(𝐵, 𝑘)]𝑇 

𝒀𝒏(𝑙, 𝑘) = 𝑾̂𝑛
𝐻

(𝑙, 𝑘) 𝑼̂𝑛(𝑙, 𝑘) 

𝒚𝒏(𝑙) = 𝑓𝑖𝑟𝑠𝑡 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑜𝑓 𝐼𝑆𝑇𝐹𝑇[𝒀𝑛(𝑙, 𝑘)] 

Step 2) Error estimation: 

𝒆(𝑙) = 𝒅(𝑙) − 𝒚1(𝑙) − 𝒚2(𝑙) 

𝑬𝟐(𝑙, 𝑘) = 𝑆𝑇𝐹𝑇 {[
𝟎

𝒆(𝑙)
]}  

 

Step 3) Signal-power estimation:  

𝑷(𝑙, 𝑘) = 𝛾𝑷(𝑙 − 1, 𝑘) + (1 − 𝛾) ∑ |𝑼𝑛(𝑙, 𝑘)|2

2

𝑛=1

 

𝑷𝑫(𝑙) = 𝛾𝑷𝑫(𝑙 − 1, 𝑘) + (1 − 𝛾) ∑ ∑ |𝑼𝑛(𝑙, 𝑘)|2

𝐾

𝑘=1

2

𝑛=1

 

𝑫̂(𝑙, 𝑘) = 𝑑𝑖𝑎𝑔{[𝑃−1(𝑙, 𝑘), … , 𝑃−1(𝑙 − 𝐵, 𝑘)]} 

 

Step 4) Filter2 independent adaptation:  

𝝓̂2(𝑙, 𝑘) = 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝐼𝑆𝑇𝐹𝑇[𝑫̂(𝑙, 𝑘)𝑼̂2
𝐻(𝑙, 𝑘)𝑬𝟐(𝑙, 𝑘)] 

 

𝑾̂2(𝑙 + 1, 𝑘) = 𝑾̂2(𝑙, 𝑘) + 𝛼

∗ 𝑆𝑇𝐹𝑇 {[
𝝓̂2

(𝑙, 𝑘), 𝑖𝑓 𝑷𝑫(𝑙) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝟎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
]} 

Step 5) Filtering using new filter2:  

𝒚2
′ (𝑙) = 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝐼𝑆𝑇𝐹𝑇{𝑾̂2

𝐻
(𝑙, 𝑘) 𝑼̂2(𝑙, 𝑘)} 

 

Step 6) Error re-estimation:  

𝒆′(𝑙) = 𝒅(𝑙) − 𝒚1(𝑙) − 𝒚2
′ (𝑙) 

𝑬𝟏(𝑙, 𝑘) = 𝑆𝑇𝐹𝑇 {[
𝟎

𝒆′(𝑙)
]} 

 

Step 7) Filter 1 independent adaptation:  

𝝓̂1(𝑙, 𝑘) = 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝐼𝑆𝑇𝐹𝑇[𝑫̂(𝑙, 𝑘)𝑼̂1
𝐻(𝑙, 𝑘)𝑬𝟏(𝑙, 𝑘)] 

𝑾̂1(𝑙 + 1, 𝑘) = 𝑾̂1(𝑙, 𝑘) + 𝛼

∗ 𝑆𝑇𝐹𝑇 {[
𝝓̂1

(𝑙, 𝑘), 𝑖𝑓 𝑷𝑫(𝑙) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝟎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
]} 

 

Step 8) Filtering using new filter1:  

𝒚𝟏
′ (𝑙) = 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝐼𝑆𝑇𝐹𝑇{𝑾̂1

𝐻
(𝑙, 𝑘)𝑼̂1(𝑙, 𝑘)} 

 

Step 9) Final error estimation:  

𝒆′′(𝑙) = 𝒅(𝑙) − 𝒚1
′ (𝑙) − 𝒚2

′ (𝑙) 
 

 

The proposed method in Table 1, 𝐞′′(𝑙) will be used for the 

output. And the computational complexity is obvious doubled 

in comparing to traditional fast block NLMS algorithm. To 

reduce computational cost, step 8) and step 9) can be avoided 

because the two filters have already been updated and 𝐞′(𝑙) and 

can be then used as the SAEC output. This simplified method 

is denoted as ProposedS. The process of the traditional and the 

proposed methods are illustrated in Figure 1. 

4. Experiments 

To illustrate the performance improvements by the 

proposed SAEC algorithms, we conducted tests with using real 

life test samples by measuring ERLE and wakeup word 

detection(WWD) rate. We defaulted same filter length equal to 

2048 with frame size 256 and NFFT size 512 for obtaining 

below test results. 

Typical constants used in the simulator are block number 

setting to 8, power smoothing factor 𝛾  setting to 0.99 and 𝜇 

 

Figure 1: Schematic diagram for the traditional and proposed method for SAEC system 

 

3956



setting to 0.008, 𝜖 is 0.001. All test samples were recorded and 

processed at sampling rate of 16kHz. 

The recordings were collected from a conference room with 

surrounded by concrete walls. The device used for conducting 

the test is Tencent Dingdang smart speaker with display. And it 

has two stereo loudspeakers. Playback level was set to between 

70% to 100% of max volume. Totally 421 utterances of the 

wakeup word is recorded from 12 people while music is playing. 

Averaged SER is around -13.20dB which was measured using 

the microphone raw input signal. Without applying AEC, 

overall WWD accuracy is < 6% under such low SER condition. 

With playback disabled, WWD rate could be above 90% in 

quiet meeting room. Hence AEC is necessary in order to 

achieve acceptable wakeup word detection accuracy rate. 

4.1. ERLE test 

To reduce the potential biased error due to initial 

convergence, last 2 seconds of raw mic and SAEC output 

recordings were taken for steady state ERLE measure. 

We also artificially added 5 most representative noise 

samples (carefully selected from noiseX-92 database, they are 

speech babble, destroyer engine, factory2, volvo and white 

noise) to the recordings to cross check how robustness of 

proposed solution is. We mixed the recordings with two SNRs, 

6dB and 20dB. Same last 2 seconds of raw and SAEC output 

recordings were used for measuring the ERLE. 

Table 2 describes the overall ERLE improvements under 

quiet environment and artificially noisy conditions with SNR at 

6 and 20dB, consistent improvement is observed. 

 

Figure 2: Residue echo power spectrum of traditional 

(blue line) and proposed (red line) method（only 0~4kHz is 

shown）. 

Although overall ERLE improvement by the proposed 

solution is not huge, however we found proposed solution often 

offers noticeable improvement under two mentioned scenarios 

in below. 

1. Content quickly changes from vocal to music and 

vice versus 

2. Content level abruptly increases/decreases  

As we can see in Figure 2, residual echo was lower in 

proposed solution than in traditional solution. The residual echo 

level was measured right after the content changes from music 

to vocal. 

Figure 3 in below illustrates the improvement seen by 

scenario 2. During 0.5~1.5 sec and 3.1~4 sec, near end workup 

word is present, and at the steady state, ERLE improvement is 

around 1.3dB comparing with that done by traditional method, 

but the proposed solution offers > 5dB of ERLE improvement 

than in traditional solution at around 1.9 sec. where the 

playback song is transiting from verse to chorus and many more 

music instruments join in performance, which abruptly changes 

the echo level. 

 

Figure 3: Residual echo level measure with music echo 

sharp burst. 

4.2. Wakeup Word Detection 

To reuse the wakeup model in Tencent Dingdang smart 

speaker with display, the wakeup word including 2 Chinese 

characters (each one is repeated once) is employed in this work, 

with their Chinese pinyin representation as “ding1 dang1 ding1 

dang1”. 

The baseline WWD system employed in this work consists 

of convolutional, LSTM and fully connected layers. From 

bottom to top, they are one convolutional layer with max 

pooling[15], two LSTM layers with 256 hidden units, each 

LSTM layer is followed by a batch normalization operation, 

one fully connected layers with 128 hidden units and a softmax 

Table 2: ERLE under quiet and noisy conditions(dB) 
 

no noise babble destroyerengine facttory2 volvo white Average 

6dB 20dB 6dB 20dB 6dB 20dB 6dB 20dB 6dB 20dB 

Traditional 17.48 14.73 17.29 13.35 17.15 12.60 17.05 12.51 17.03 11.70 16.90 15.03 

Proposed 18.58 15.62 18.37 14.15 18.20 13.50 18.10 13.40 18.09 12.51 17.94 15.99 

ProposedS 18.17 15.31 17.98 13.89 17.82 13.25 17.73 13.15 17.71 12.29 17.57 15.67 

Proposed Δ 1.10 0.89 1.07 0.80 1.05 0.90 1.06 0.89 1.06 0.81 1.04 0.96 

ProposedS Δ 0.69 0.59 0.68 0.54 0.67 0.64 0.68 0.64 0.68 0.59 0.67 0.64 
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layer. 40 dimensional log-mel filterbank features with its delta 

and delta-delta appended are computed every 25ms with a 10ms 

frame shift. At each frame, we stack 10 frames to the left and 5 

frames to the right as the input feature to the convolutional layer.  

The WWD model is pre-trained on a 100k-hour Chinese ASR 

multi-condition training set that contains both clean and far-

field noisy data. The output layer has 3 output units representing 

the 2 Chinese characters of the wakeup word and one non- 

wakeup-word filler. A wakeup word specific data set of more 

than 1000 hours from more than 10 thousand human speakers, 

is used as positive examples. So the model is well adapted to a 

wide range of smart box users. Please refer to [16] for more 

details about network and training settings and to [17] for more 

details about posterior handling 

Also to reduce the potential biased error due to initial 

convergence, all SAEC filters start from convergent state by 

initializing with filter coefficients dumped from steady state. 

From table 3, WWD test result also shows consistent 

positive observation that proposed solution has improved 

WWD rate over traditional solution by > 2% on average. 

It is also shown that although the simplified ProposedS 

algorithm has lower ERLE improvement(average Δ is 0.96dB 

vs. 0.64dB) as shown in Table 2, it has comparable 

improvement in terms of WWD rate with full-process 

model(average Δ is 2.29% vs. 2.16%), and even higher in no 

noise cases(2.38% vs. 3.33%). That means with the ProposedS 

algorithm, computation is saved without much sacrificing the 

WWD performance. 

5. Conclusions 

To improve the performance of the traditional NLMS based 

SAEC system, we propose a method to independently update 

the adaptive filters by mutually pre-whitening the residue error 

signals. Consistent ERLE improvement is observed on the 

recordings from commercial smart speak product. Because of 

its improved stability especially at the abrupt content changes 

in echo signal, wakeup word detection rate is also reasonably 

improved. Computationally simplified version of the proposed 

method also shows comparable improvement in WWD task. 
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