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Abstract
The acoustic front-end of hands-free communication de-

vices introduces a variety of distortions to the linear echo path
between the loudspeaker and the microphone. While the ampli-
fiers may introduce a memory-less non-linearity, mechanical vi-
brations transmitted from the loudspeaker to the microphone via
the housing of the device introduce non-linarities with memory,
which are much harder to compensate. These distortions signif-
icantly limit the performance of linear Acoustic Echo Cancella-
tion (AEC) algorithms. While there already exists a wide range
of Residual Echo Suppressor (RES) techniques for individual
use cases, our contribution specifically aims at a low-resource
implementation that is also real-time capable. The proposed
approach is based on a small Recurrent Neural Network (RNN)
which adds memory to the residual echo suppressor, enabling it
to compensate both types of non-linear distortions. We evaluate
the performance of our system in terms of Echo Return Loss En-
hancement (ERLE), Signal to Distortion Ratio (SDR) and Word
Error Rate (WER), obtained during realistic double-talk situa-
tions. Further, we compare the postfilter against a state-of-the
art implementation. Finally, we analyze the numerical complex-
ity of the overall system.
Index Terms: Acoustic echo cancellation, residual echo sup-
pression, non-linear echo, recurrent neural networks

1. Introduction
In hands-free speech communication devices, an Acoustic Echo
Canceler (AEC) is an essential building block which models
the acoustic path between loudspeaker output and microphone
input with a linear Finite Impulse Response (FIR) filter. The
AEC subtracts the echo replica from the microphone signal,
enabling echo-free voice communication [1]. Unfortunately,
he task of echo cancellation is complicated by additional non-
linear distortions in the loudspeaker and the amplifier, and also
by mechanical vibrations transmitted from the loudspeaker via
the case of the device to the microphone [2]. These distortions
cannot be modeled by linear echo cancelers. Consequently, the
practically achievable Echo Return Loss Enhancement (ERLE)
is limited, which results in a degraded speech quality and intel-
ligibility. This problem is even more relevant today as speaker-
phones or smart speakers are portable devices with small enclo-
sure dimensions and tiny loudspeakers, which are prone to non-
linear distortions. Despite their size, they produce high sound
pressure levels by using amplifiers which pre-distort the loud-
speaker signal [3]. This introduces even more distortions to the
echo path. Non-linear distortions can be categorized into two
groups:

1) Non-linearities without memory, i.e. harmonic distor-
tions caused by non-linear loudspeaker drivers, or clipping of
the microphone signal [4]. Non-linear systems without mem-

ory can be approximated by polynomials in the form fNL(x) =∑∞
i=0 αi · xi. The parameters αi may be determined using

non-linear system identification, i.e. by using a chirp signal [5].
This is also a standard procedure for measuring the individual
harmonics and the overall Total Harmonic Distortions (THD)
of loudspeakers and amplifiers. Harmonic distortions may be
compensated by incorporating power-filters into the AEC algo-
rithm [6–8], or by using a residual echo suppressor [9–12].

2) Non-linearities with memory, i.e. partial vibrations of the
loudspeaker membrane, or structure-borne sounds and mechan-
ical vibrations [4]. Non-linear systems with memory can be
approximated by Volterra series [13]. As the size of a Volterra
kernels grows exponentially with its order, this concept is of
limited use in real-world applications. Further, tuning the ker-
nels for a given non-linearity is a non-trivial task, as system
identification requires Higher Order Statistics (HOS) and spec-
tral analysis. However, several echo suppressors with Volterra
series have been proposed, e.g.: sparse Volterra kernels [14,15],
or Hammerstein models [16, 17].

Both Volterra series and Multilayer Perceptrons (MLP) are
universal approximators for non-linearities with memory. Con-
sequently, neural networks have been proposed for non-linear
residual echo cancellation [18–23]. However, we found that
many contributions in this field are limited by one or more of
the following aspects: (i) Only memoryless non-linearities are
considered, even though both types always occur in a real-world
scenario [4]. (ii) The neural network features a lot of weights,
making the postfilter computationally more expensive than the
actual AEC itself. (iii) The system is not real-time capable due
to the data flow of the neural network.

In this paper, we consider Recurrent Neural Networks
(RNNs) as postfilter to address these shortcomings. (i) Due
to the recurrent structure of our neural network, non-linearities
with memory can be learned directly from real-world audio ex-
amples. The use of internal memory in form of an LSTM layer
allows for a smaller network compared to an MLP [18, 23]. (ii)
Our approach is real-time capable, due to the LSTM layer oper-
ating only in forward direction of the data stream. It introduces
no additional delay to the overall system, as it operates on one
block of data at a time. (iii) With only two Dense layers and one
LSTM layer with 25 units in its smallest variant, our neural net-
work is considerably smaller than comparable approaches with
1024 or more units. Further, our system can be trained with as
little as 1.75h of echo recordings, which allows for a fast train-
ing process even without a GPU.

2. System Model
We assume a classical, monaural speakerphone with a loud-
speaker and a microphone for hands-free telephony applica-
tions, i.e. Voice over IP (VoIP). The system model is shown
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in Fig. (1). In this setup, the far-end speaker signal is received
via the network (RX), and the near-end speaker signal is trans-
mitted (TX) back over the network. Due to acoustic echoes, the
microphone picks up both the near-end speaker and the acous-
tic echo from the loudspeaker. Hence, an AEC is required. In
Fig. (1), all signals are denoted in the Short Time Fourier Trans-
form (STFT) domain with a frequency index k and a time index
t. The loudspeaker and microphone signals are represented by
X(k, t) and D(k, t), respectively. The echo model, which is
obtained from the AEC filter, is given as Y (k, t). By subtract-
ing the echo model from the microphone signal, we obtain the
residual signal E(k, t). The proposed postfilter operates on the
residual and the microphone signal, and outputs the enhanced
signal Z(k, t).
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Figure 1: System Model with signals in the STFT domain.

The Echo Impulse Response (EIR) H(k, t) is modeled as
FIR filter. Usually, it is much longer than the STFT block
length, therefore it is partitioned into L blocks. Using this no-
tation, the microphone signal can be written as

D(k, t) = S(k, t) + fNL

(
X(k, t)

)
+

t∑
l=t−L

X(k, l)H(k, l),

(1)
where S(k, t) denotes near-end speech signal, and fNL(·) de-
notes an unknown non-linear relationship with memory. The
AEC in Fig. (1) estimates the EIR Ĥ(k, t), such that the echo
model is given as

Y (k, t) =

t∑
l=t−L

X(k, l)Ĥ(k, l) (2)

After the subtraction stage, the residual is given as

E = D − Y =
∑

XH̃ + fNL

(
X
)
+ S, (3)

where H̃ = H − Ĥ . The frequency and time indices have
been omitted for readability. Ideally, the filter mismatch H̃ and
the non-linearity fNL(·) are small, so that the residual signal
contains only the near-end speech signal S(k, t).

2.1. AEC Framework

We use a frequency-domain, block-based Acoustic Echo Can-
celer (AEC), which partitions the echo filter into multiple blocks
using a STFT. This reduces the overall system delay of the al-
gorithm to a single STFT block length, allowing for real-time
operation. We chose the state-space block-partitioned AEC im-
plementation from [24], which we found to be both robust and
well-performing in real-world scenarios. We use a block length

of 1024 samples, 50% overlap, and L = 16 blocks in total at
fs = 16kHz to model a tail length of up to 512ms.

In a practical application there is always a mismatch be-
tween the filter estimated by the AEC, and the actual EIR. The
linear echo path may change over time as the near-end speaker
moves in front of the device. The device itself may be carried
around, causing a constantly changing EIR. These changes must
be tracked by the AEC algorithm.

3. RNN postfilter
In a real-world scenario with actual loudspeakers and ampli-
fiers, both non-linearities with and without memory are always
present. These distortions cannot be compensated by the AEC.
Residual echo suppressors have been proposed for both non-
linearities without memory [8–12], and for non-linearities with
memory [14–17]. With the advent of machine learning, the
performance of residual echo suppressors has dramatically in-
creased [18–23].

However, our contribution differs in the following key as-
pects: (i) Due to the recurrent structure of our neural network,
non-linearities with memory can be learned directly from real-
world audio examples, while most contributions only use mem-
oryless non-linearities. (ii) Our approach is real-time capable,
due to the LSTM layer operating only in forward direction of
the data stream. It introduces no additional delay to the over-
all system. (iii) With only three layers and 25 LSTM cells in
its smallest variant, our neural network is considerably smaller
than comparable approaches [18, 23].

Fig. (2) outlines the architecture of our RNN postfilter. It
consists of three layers, and operates on log-differences of the
power of the microphone signal D(k, t) and the echo model
Y (k, t). The first layer is a simple dense layer, which performs
data compression from K frequency bands to M bands. This
is useful to facilitate a small LSTM layer, which is the second
layer of the system and the computationally most complex one.
M can be as low as 25 units, whereas K = 513 in our imple-
mentation. The third layer expands the data back toK bands. It
predicts a gain mask p(k, t), which is multiplied element-wise
to the residual signal E(k, t) to produce the enhanced output,
i.e.:

Z(k, t) = E(k, t)p(k, t), (4)

with p(k, t) ∈ [0, 1].
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Figure 2: RNN architecture with K frequency bins and M
LSTM units.

3.1. Hybrid loss function

To train the RNN postfilter, we consider two use cases during a
conversation:
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• Single-talk: Only the far-end speaker X(k, t) is talking,
the near-end is silent, i.e. S(k, t) = 0.

• Double-talk: Both near- and far-end speakers talk simul-
taneously.

During single-talk, we want to maximize the Echo Return Loss
Enhancement (ERLE), i.e.: the output Z(k, t) is ideally zero.
The ERLE is defined as follows:

LERLE = 10log10

∑
K,T |D(k, t)|2∑
K,T |Z(k, t)|2

(5)

During double-talk, we want to maximize the Signal to Dis-
tortion Ratio (SDR), i.e.: the output Z(k, t) is identical to the
near-end signal S(k, t). The SDR is defined as:

LSDR = 10log10

∑
K,T |S(k, t)|

2∑
K,T |S(k, t)− Z(k, t)|2

(6)

To fulfill both constraints, we use a hybrid objective to train the
RNN postfilter. The overall loss function to be minimized by
the RNN is given as:

L = −LERLE − λLSDR, (7)

where the parameter λ allows to adjust the importance of either
the ERLE or SDR constraint during training.

4. Experiments
4.1. Recording Setup

In order to obtain realistic distortions which contain both types
of non-linearities, it is essential to use a real-world setup, i.e. a
speakerphone or smart speaker with a loudspeaker and a micro-
phone in the same case. Otherwise it would be difficult to ac-
curately simulate realistic non-linearities with memory, as well
as changing EIR paths over time. Therefore, we used a small
speakerphone (EasyAcc-MC) with a 3W loudspeaker and an
electret microphone. We disconnected the internal electronics
and used an external amplifier to drive the loudspeaker. The
amplifier and the microphone were plugged into the line-out
and mic-in jack of a sound card, respectively. We measured
the Total Harmonic Distortion (THD) of the speakerphone at
3W, which is about 12%. Therefore, a reasonable amount of
non-linear distortions is present in our setup [2]. To drive the
speakerphone from a Linux-based PC with ALSA [25], we use
the PlayRec Python module [26], which simultaneously plays
and records audio from a sound card. We further implemented
the block-based AEC from [24] in Python, to obtain the relevant
signals for training the RNN postfilter.

The speakerphone was placed in 7 different office rooms in
10 different positions each. The rooms had a RT60 between
250ms and 500ms. For each position, we generated 3 train-
ing examples. Each training example consists of the excitation
signal X(k, t), and the recorded echo response D(k, t). We
use 30s of randomly concatenated utterances from the TIMIT
speech corpus [27] as excitation signal X(k, t). The simulta-
neously recorded microphone signal D(k, t) contains 30s echo
response. In total, 1.75 hours of reverberated samples have been
obtained. All samples were recorded at fs = 16kHz. Fig. (3)
illustrates the recording setup, using the speakerphone. Green
arrows represent the linear echo path (EIR), and red parts depict
potential sources of non-linear distortions.

non-linear echo
path via case

AMP

Loudspeaker
non-linearities

Microphone
non-linearities

linear echo
path

AMP

excitation
signal

echo
response

Figure 3: Recording setup using a small speakerphone.

4.2. Training

We used the recordings from the first 6 rooms for training, and
the rest for evaluating the RNN postfilter. Note that the neural
network does not learn speech or speaker characteristics, but
rather the non-linearities embedded in the microphone signal
D(k, t). Hence, a small training set is sufficient. We train the
RNN as follows:

First, we process each of the 30s long data samples with the
AEC algorithm. The AEC provides the residualE(k, t) and the
echo model Y (k, t), which are required as inputs for the RNN
(see Fig. 2). To train on time-varying EIRs, we reset the AEC
weights at the beginning of each 30s long training example.

To optimize the RNN for both ERLE and SDR, we use each
training example twice: In the first pass, the ERLE from Eq. (5)
is calculated for the single-talk case, i.e. the near-end speaker
S(k, t) = 0. In the second pass, the SDR from Eq. (6) is cal-
culated for the double-talk case. We used randomly selected
utterances from the the si tr s set of the WSJ0 [28] corpus to
simulate the near-end speaker S(k, t), which we mixed into
the microphone signal with a Signal to Echo Ratio (SER) of
−12dB. This corresponds to the SER encountered when driv-
ing the loudspeaker at 3W and speaking into the device from
approximately 0.5m distance. The trade-off parameter λ in Eq.
(7) was set to 1. We trained 7 different versions of the RNN
postfilter, where we parametrized the size of the LSTM layer
from 25 to 250 units, see also Table (1).

4.3. Testing

Testing the RNN postfilter was done with the unused recordings
from the 7th room. ERLE and SDR are evaluated as during
training. We also measured the Word Error Rate (WER) for
the enhanced signal Z(k, t) during double talk. The WER is
obtained by the Google Speech-to-Text API [29]. In particular,
it was measured using clean WSJ0 data set as reference, for
which the Google Speech-to-Text API reports a WER of 6.1%.

4.4. Results

Table 1 reports the ERLE, SDR and WER scores for experi-
ments using a varying LSTM layer size from M = 25 to 250
units. As a baseline, we also evaluated the AEC without the
postfilter. Further, we compare our postfilter to a state-of-the art
reference AEC implementation (Speex-DSP) [30]. Speex also
uses a frequency-domain, block-based echo canceler [31], and
a residual echo-suppressor. We configured the same echo-tail
length of 512ms. It can be seen that Speex slightly outperforms
the baseline in all scores. However, our RNN postfilter yields a
significant improvement in all scores.
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LSTM cells M ERLE SDR WER
25 44.868 11.079 17.08%
50 51.802 12.084 16.41%
75 55.303 12.656 14.87%

100 60.447 12.902 12.56%
150 61.650 13.294 11.72%
200 60.637 13.404 11.33%
250 63.019 13.434 10.64%

Speex-DSP 21.726 6.716 25.16%
no postfilter 19.206 5.454 44.73%

Table 1: ERLE, SDR and WER scores for the RNN postfilter, the
reference system (Speex-DSP) and the AEC without a postfilter
as a basline.

4.5. Performance

Fig. (4) illustrates a 30s example from the test set with M =
100 LSTM cells. Panel (a) shows the far-end and near-end sig-
nals, respectively. Panel (b) shows the residual signal E(k, t).
It can be seen that the AEC needs approximately 10s to adjust
to the EIR. During that time, the error in the residual is quite
large. About 16s into the sample, the near-end speaker S(k, t)
starts talking. Panel (c) shows the enhanced output Z(k, t) of
the RNN postfilter. It can be seen that the enhanced signal only
contains the desired speech signal. Panel (d) shows the ERLE,
measured over time and split into the contribution of both the
AEC and the postfilter, respectively.

Figure 4: Performance of the RNN postfilter for a 30s test ex-
ample: (a) far-end and near-end signals X(k, t) and S(k, t),
respectively. (b) AEC residual E(k, t). (c) enhanced output of
the postfilter Z(k, t). (d) ERLE of the AEC and the postfilter.

4.6. Numerical complexity

In this section we will discuss the numerical complexity of the
overall system. We count the total number of Multiply and Ac-
cumulate (MAC) operations, which can be performed on either
a dedicated DSP or CPU with a vector floating point unit (i.e.:
ARM NEON). The RNN postfilter consists of 3 layers. The first
layer is a dense layer with K inputs and M outputs. Its forward
path is defined as y = Wx+ b, where W is a K ×M weight
matrix and b is a bias vector of size M , and the input x ∈ RK .
Hence, the layer requires (K ·M+M) MAC operations1. In the
same manner, the LSTM layer requires (8M2 + 7M) MACs,
and the third layer requires (M ·K +K) MACs.

The complexity of the state-space block-partitioned AEC
can be assessed using Eq. (26-32) in [24]. For L = 16 blocks
and K = 513 frequency bins, we obtain 143k MACs includ-
ing complex operations. Additionally, there are L+ 3 complex
FFTs and L + 1 complex IFFTs required for zero-padding and
processing the time-domain inputs, adding another 737k MACs
to the algorithm. Table (2) summarizes the numerical complex-
ity for each RNN postfilter and the AEC. It can be seen that
the postfilter adds only a fraction to the overall complexity, es-
pecially for small LSTM layers. At fs = 16kHz and a block
length of 1024 samples with 50% overlap, we process 31.25
blocks per second. In total, the smallest postfilter+AEC requires
25M MACs/s, while the largest postfilter+AEC requires 51M
MACs/s, which is well within the reach of modern embedded
systems.

LSTM cells M MAC operations
25 31k
50 72k
75 123k

100 184k
150 336k
200 527k
250 758k

AEC 880k

Table 2: Numerical complexity per block.

5. Conclusion
In this paper, we proposed a residual echo suppressor which
uses a recurrent neural network to model distortions such as
non-linearities with memory, which are often found in small
speakerphones housing a loudspeaker and a microphone in the
same case. We showed that our approach uses very little re-
sources, while still being real-time capable as it introduces no
additional delay to the echo canceler. We also showed that the
performance in terms of ERLE, SDR and WER is greatly im-
proved compared to a state-of-the art echo canceler and resid-
ual echo suppressor. In particular, the RNN postfilter lowers the
WER by up to 14.52%
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