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Abstract 
Generative adversarial networks (GANs) have become a 
popular research topic in speech enhancement like noise 
suppression. By training the noise suppression algorithm in an 
adversarial scenario, GAN based solutions often yield good 
performance. In this paper, a convolutional recurrent GAN 
architecture (CRGAN-EC) is proposed to address both linear 
and nonlinear echo scenarios. The proposed architecture is 
trained in frequency domain and predicts the time-frequency 
(TF) mask for the target speech. Several metric loss functions 
are deployed and their influence on echo cancellation 
performance is studied. Experimental results suggest that the 
proposed method outperforms the existing methods for unseen 
speakers in terms of echo return loss enhancement (ERLE) and 
perceptual evaluation of speech quality (PESQ). Moreover, 
multiple metric loss functions provide more freedom to achieve 
specific goals, e.g., more echo suppression or less distortion. 
Index Terms: nonlinear echo cancellation, deep learning, 
generative adversarial network, convolutional recurrent 
network 

1. Introduction 
Acoustic echo originates in a local audio loop back that occurs 
when a (near-end) microphone picks up audio signals from a 
speaker, and sends it back to a (far-end) participant. Echo can 
be extremely disruptive to a conversation, and makes the phone 
calls very unpleasant and distracting. Acoustic echo 
cancellation (AEC) or suppression (AES) aims to suppress echo 
from microphone signal whilst leaving the speech of near-end 
talker least distorted. Conventional echo cancellation 
algorithms estimate the echo path by using adaptive filter [1], 
under the assumption of a linear relationship between far-end 
signal and acoustic echo. In practice this linear assumption does 
not always hold, and thus a post-filter [2] [3] is often deployed 
to suppress the residue echo. However, performance of such 
AEC algorithms drops dramatically when nonlinearity is 
introduced. Although some nonlinear adaptive filters like 
Volterra filter [4] were proposed, they are too expensive to 
implement. 

With the advancement in deep learning, many of the speech 
processing tasks, including speech recognition [5], noise 
suppression [6] [7], speech separation [8] [9] have been done 
using deep neural networks. Several solutions are also proposed 
on acoustic echo cancellation. Lee et al. [10] used a deep neural 
network with 3 layers of restricted Boltzmann machine (RBM) 
to predict the gain of residual echo suppression. Muller et al. 
[11] suggested to use near-end inactive frequencies to adapt 
acoustic transfer function during double talk, where a two fully 
connection layer network is used to detect the activity of near-
end signal. Zhang and Wang [12] proposed a bidirectional long-
short term memory (BLSTM) to predict the ideal ratio mask 

from microphone signals, which is then used to resynthesize the 
near-end speech. This solution does not need double talk 
detection whilst conventional methods do. Carbajal et al. [13] 
built a two-layer network to predict phase sensitive filter of the 
residual echo suppression. Zhang et al. [14] used convolutional 
recurrent networks and long-short term memory to separate the 
near-end speech from the microphone recordings. Fazel et al. 
[15] proposed deep recurrent neural networks with multitask 
learning to learn the auxiliary task of estimating the echo in 
order to improve the main task of estimating the near-end 
speech. 

More recently, the usage of generative adversarial networks 
in speech enhancement has been studies. Many GAN based 
speech enhancement algorithms have been proposed. Some are 
end-to-end solutions that directly mapping a noisy speech to an 
enhanced signal [16] [17]. Other GANs operate in T-F domain 
[18] [19], which predict a mask and then resynthesize the target 
speech in time domain. 

In this paper, we propose a GAN-based acoustic echo 
cancellation algorithm for both linear and nonlinear echo 
scenarios. In the generator network, log magnitude spectra of 
microphone signal and reference signal are taken as input, and 
T-F masks of the spectra are predicted as output. The encoder 
consists of convolutional layers and decoder comprises 
deconvolutional layers correspondingly. Between them is a 
two-layer BLSTM. Convolutional layers are employed to 
extract the local correlations between microphone signal and 
reference signal, as well as the mapping relationship between 
them. BLSTM layers, in the center of G network, can capture 
long-term temporal information. The discriminator D network 
has convolutional layers followed by fully connected layers. 
The input of discriminator is a pair of ground-truth signal and 
enhanced signal, and output is [0, 1] scaled score instead of 
True/False.  

The remainder of this paper is organized as follows. Section 
2 introduces the background knowledge. In Section 3 we 
present our GAN-based algorithm, followed by experimental 
setting and results in Section 4. Final conclusion is given in 
Section 5. 

2. Background knowledge 

2.1. Acoustic echo cancellation 

Acoustic echo is generated by the coupling of a microphone and 
a speaker, as shown in Figure 1. Far-end signal (or reference 
signal) 𝑥(𝑡)  propagate from speaker and through various 
reflection paths ℎ(𝑡), and is mixed with near-end signal 𝑠(𝑡) at 
the microphone 𝑑(𝑡). The acoustic echo is a modified version 
of 𝑥(𝑡) and includes echo path ℎ(𝑡) and speaker distortion. 

Conventional AEC algorithms utilize adaptive filter to 
estimate the echo paths ℎ(𝑡), and subtract the estimated echo 
𝑦(𝑡) = ℎ*(𝑡) ∗ 𝑥(𝑡) from microphone signal 𝑑(𝑡). A separate 
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double talk detection is required to freeze filter adaption during 
double talk period. This linear echo canceller is under the 
assumption of linear relationship between reference signal and 
acoustic echo. However, nonlinearity is often introduced due to 
hardware limitation, like speaker saturation. Therefore, a post 
filter is needed to further suppress the residue echo. The 
diagram of traditional AEC algorithm is shown as top figure in 
Figure 2.  

 
Figure 1 Example of echo generation and acoustic 

echo cancellation 

 

 
Figure 2 Examples of conventional AEC (top) and 

neural network based AEC (bottom) 
 
Recently, deep learning based AEC algorithms have shown 

great potential. With sufficient training data, neural network 
based solutions yield better performance than traditional ones 
in both matched and unmatched test cases. Figure 2 bottom 
shows one example of DNN based algorithm. Model input 
consists of log magnitude spectra of reference signal and 
microphone signal. And the model aims to estimate the 
enhanced magnitude spectrum (similar to LEC and post filter 
combination). Finally, microphone signal phase is used to 
resynthesize the enhanced signal in time domain. 

General metrics for AEC performance evaluation includes 
echo return loss enhancement (ERLE) and perceptual 
evaluation of speech quality (PESQ), which are used in this 
experiment as well. 

ERLE is often used to measure the echo reduction achieve 
by the system during single talk situation where near-end talker 
is inactive. ERLE is defined as 

𝐸𝑅𝐿𝐸(𝑑𝐵) = 10 log56
7{9:(;)}
7{=:(;)}

                    (1) 

where 𝐸{} represents the statistical expectation. 
PESQ evaluates the perceptual quality of enhanced near-

end speech during double talk period. PESQ score is calculated 
by comparing the enhanced signal to the ground-truth signal, its 
score ranges from -0.5 to 4.5 and a higher score indicates better 
quality. 

2.2. Generative adversarial network 

GAN consists of two networks: a generator network G and a 
discriminator network D. This forms a minimax game scenario, 
where G is trying to generate fake data to fool D, and D is 
learning to discriminate between real and fake data. 
Importantly, G does not memorize input-output pairs, instead it 
learns to map the data distribution characteristics to the 
manifold defined in prior 𝒵. D is typically a binary classifier, 
and its inputs are either real samples, coming from the dataset 
that G is imitating, or fake samples, made up by G. As described 
in [20], the loss function for D and G in conventional GAN can 
be formulated as 
           min

B
max
E
𝑉(𝐷, 𝐺) = 𝔼K~M[log𝐷(𝑦)] 

                                             +𝔼Q~𝒵[log(1 − 𝐷(𝐺(𝑧)))]      (2) 
where 𝔼K~M indicates the expectation of 𝑦 from distribution 𝑌.  

 
Figure 3 GAN training process 

 
Figure 3 shows the GAN training process. G adapts its 

parameters such that D classifies G’s output as real. During 
back-propagation, D gets improved at feeding real features in 
its input and, in turn, G corrects its parameters to move 
forwards. 

3. Proposed method 
The echo cancellation problem is defined so that we have an 
input echo-corrupted signal 𝑑(𝑡) and want to clean it to obtain 
the enhanced signal 𝑞(𝑡). We propose to get this done with 
GAN model. In the proposed method, the G network performs 
the enhancement. Its inputs are the log magnitude spectra 
𝐷(𝑛, 𝑘) and 𝑋(𝑛, 𝑘) of microphone signal 𝑑(𝑡) and reference 
signal 𝑥(𝑡) separately, together with the latent representation 𝑧, 
and its output is the T-F masks 𝑀𝑎𝑠𝑘(𝑛,𝑘) =
𝐺{𝐷(𝑛, 𝑘),𝑋(𝑛, 𝑘)}  that used to resynthesize the enhanced 
version 𝑄(𝑛, 𝑘) = 𝑀(𝑛, 𝑘) ∗ 𝐷(𝑛,𝑘). The G network features 
an autoencoder-like shape as depicted in Figure 4. In the 
encoding stage, there are three 2-D convolutional layers follow 
by a reshape layer. Convolutions enforce the network to focus 
on temporally-close correlations in the input signal, and were 
shown to be more stable for GAN training [21]. 
Correspondingly, the decoding stage is a reversed version of the 
encoding, which comprises of three deconvolutional layers. 
Between encoder and decoder, there are two bidirectional 
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LSTM layers to capture extra temporal information. Batch 
normalization (BN) [22] is applied after each (de-
)convolutional layer except the output layer. Exponential linear 
units (ELU) [23] are used as activation functions for each layer 
except output layer that using sigmoid activation function to 
predict the T-F masks. 

 
Figure 4 Encoder-decoder architecture of G network 

 
The G network also features skip connections, connecting 

each encoding layer to its homologous decoding layer, and 
passing the fine-grained information of the input spectra to the 
decoder. In addition, they offer a better training behavior, as the 
gradients can flow deeper through the whole structure [24]. 

D, on the other hand, is in charge of transmitting 
information to G of what is real and what is fake, such that G 
can slightly correct its output towards the realistic distribution, 
getting rid of the echo components as those are signaled to be 
fake. D can be expressed as learning some sort of loss for G’s 
output to look real. D has a similar structure as the encoder in 
G, where it has three convolutional layers, as well as a flatten 
layer, then followed by three fully connected layers. 

Updating weights towards higher objective metric scores 
has been proven to work well [19] 

  min
E
𝑉(𝐷) = 𝔼(Q,K)~(𝒵,M) \]𝐷(𝑦, 𝑦) − 𝑄(𝑦,𝑦)^

_
 ̀

                    +𝔼(Q,K)~(𝒵,M)[]𝐷(𝐺(𝑧), 𝑦) − 𝑄(𝐺(𝑧), 𝑦)^
_] 

min
B
𝑉(𝐺) = 𝔼Q,K~(𝒵,M)[(𝐷(𝐺(𝑧), 𝑦) − 1)_]                  (3) 

where 𝑄 stands for the normalized evaluation metric which has 
its output in range of [0, 1] (1 means the best), and therefore 
𝑄(𝑦, 𝑦) = 1. Furthermore, we found that by adding a L2 norm 
in 𝑉(𝐺) leading to better results: 

min
B
𝑉(𝐺) = 𝔼Q,K~(𝒵,M)[(𝐷(𝐺(𝑧), 𝑦) − 1)_] 

 +𝜆‖𝐺(𝑧) − 𝑌‖_                                     (4) 
In the proposed algorithm, log magnitude spectrum is used 

as input feature. We apply an FFT size of 512 with 25 ms 
window length and 10 ms step size. PESQ and ERLE are used 
as the higher objective metrics, and 𝜆 = 10. 

Inside the encoder in G, the number of feature maps for 
convolutional layers are set to: 16, 32, and 64. The kernel size 
used for the first layer is (1, 3) and for the remaining layers is 
(2, 3), with strides set to (1, 2). The BLSTM layers consist of 
256 neurons, with 128 in each direction and a time step of 100. 
The decoder part of G follows the reverse parameter setting as 
in the encoder.  

The number of feature maps for convolutional layers in D 
are set to: 10, 20, 20, and neurons in the fully connected layers 
are: 30, 10, 1. All models are trained using Adam optimizer [25] 
for 60 epochs with a learning rate of 0.002 and a batch size of 
1. The time step changes with the number of frames per 
sentence. The input of D is a pair of ground-truth signal and 
enhanced signal, and output is [0, 1] scaled score instead of 
True/False. For PESQ loss function, the ground-truth signal is 
clean near-end speech, and for ERLE loss function, the ground-
truth signal is noisy signal (or the mic signal). Both PESQ and 
ERLE metric loss are based on utterance level. 

4. Experimental evaluation 

4.1. Experimental settings 

TIMIT dataset [26] is used to evaluate the echo cancellation 
performance. We built a dataset similar to the ones reported in 
[14] [15]: From 630 speakers of TIMIT, we randomly choose 
100 pairs of speakers (40 male-female, 30 male-male, 30 
female-female) as the far-end and near-end speakers. Three 
utterances of the same far-end speaker are randomly chosen and 
concatenated to create a far-end signal. Each utterance of a 
near-end speaker is then extended to the same size as that of the 
far-end signal by zero padding in the rear. Seven utterances of 
near-end speakers are used to generate 3500 training mixtures 
where each near-end signal is mixed with five different far-end 
signals. From the remaining 430 speakers, another 100 pairs of 
speakers are randomly picked as the far-end and near-end 
speakers. We followed the same procedure as described above, 
but this time only three utterances of near-end speakers are used 
to generate 300 testing mixtures where each near-end signal is 
mixed with one far-end signal. Therefore, the testing mixtures 
are from untrained speakers. 

The following process is applied to the far-end signal to 
model the nonlinear acoustic path as in [27]. For the nonlinear 
model of acoustic path, we first applied the hard clipping to 
simulate the speaker saturation (𝑇ℎ𝑟 = 80% of the maximum 
volume of input signal): 

𝑥ghij(𝑡) = k
−𝑥lmn,							𝑖𝑓	𝑥(𝑡) < −𝑇ℎ𝑟	
𝑥(𝑡),											𝑖𝑓	|𝑥(𝑡)| ≤ 𝑇ℎ𝑟
𝑥lmn,										𝑖𝑓	𝑥(𝑡) > 𝑇ℎ𝑟			

              (5) 

Then, we applied the following sigmoidal function to 
simulate the speaker distortion: 

𝑥vw(𝑡) = 4y _
5z{nj(|m∙~(;))

− 1�                           (6) 

where 𝑏(𝑡) = 1.5𝑥ghij(𝑡) − 0.3𝑥ghij(𝑡)_, and 𝑎 = 4 if 𝑏(𝑡) >
0  and 𝑎 = 0.5  otherwise. Finally, the output of sigmoidal 
function is convolved with a randomly chosen room impulse 
response (RIR) to render the acoustic echo picked by the 
microphone. 

Image method [28] is used to generate RIRs for training. 
The length of RIRs is set to 512, the simulation room size is 
4𝑚 × 5𝑚× 3𝑚, and a microphone is placed at [2, 2, 1.5]m. A 
speaker is placed at five random places with 1.5m distance from 
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the microphone. The five RIRs’ reverberation time (RT60) 
ranges between 0.2 ~ 0.5 seconds. 

Five real environmental recorded RIRs from RWCP 
database [29] is used to generate acoustic echo in the test. Table 
I shows the information of the five RIRs. 

Table 1 RIRs from RWCP database 
RIRs E1A E1B E1C E2A 

RT60 (in second) 0.12 0.31 0.38 0.30 
 
Both linear and nonlinear echo scenarios are considered in 

this test. In training step, microphone signals are generated 
randomly at signal to echo ratio (SER) {-6, -3, 0, 3, 6} dB, 
where SER is defined as 

𝑆𝐸𝑅(𝑑𝐵) = 10 log56
7{�i��mh����: }

7��i��mh���
: �

                      (7) 

In testing stage, microphone signals are generated at SER 
levels {0, 3.5, 7} dB, slightly different from the training SERs, 
in order to evaluate the unmatched training-test cases. 

4.2. Experimental results 

In this experiment, two state-of-the-art neural network 
algorithms, CRNN [14], and Multitask GRU [15] are deployed 
as the benchmark. It is shown that NN based methods 
outperforms conventional ‘AES+RES’ methods in [15], and 
thus we skip the ‘AES+RES’ comparison here. Instead of 
original implementation in [14], we directly used the G in the 
proposed method as CRNN structure, and the parameters are 
given in Section 3. Multitask GRU was implemented following 
the instructions in [15]. 
 

Table 2 PESQ and ERLE scores in linear acoustic 
path scenarios 

Metrics Methods 
Testing SER (dB) 
0 3.5 7 

PESQ 

Input 1.80 2.02 2.28 
CRNN 2.67 2.80 3.18 
Multitask GRU 2.84 3.05 3.30 
CRGAN-EC-P 2.90 3.10 3.46 
CRGAN-EC-E 2.54 2.72 3.06 

ERLE 
(dB) 

Input 0 0 0 
CRNN 59.60 60.66 61.10 
Multitask GRU 58.20 59.14 59.60 
CRGAN-EC-P 59.67 60.50 61.21 
CRGAN-EC-E 64.12 64.10 67.28 

 
We first evaluate our proposed method in linear acoustic 

path scenarios. Table 2 shows the average PESQ and ERLE 
scores of the unprocessed, CRNN, Multitask GRU, and the 
proposed methods. ‘CRGAN-EC-P’ denotes the proposed 
GAN using PESQ as metric loss, and ‘CRGAN-EC-E’ denotes 
GAN with ERLE loss correspondingly. The results show that 
CRGAN-EC-P yields the best PESQ scores among all the 
methods, and comparable ERLE scores to CRNN and Multitask 
GRU. The superior performance of CRGAN-EC-P could be 
explained as following. Convolutional layers contribute in 
providing local correlations and mapping between the 
microphone signal and reference signal, and BLSTM layers 

contribute in capturing long-term temporal information. 
Furthermore, traditional mean square error (MSE) loss function 
measures the spectrum distance between enhancement signal 
and ground-truth signal with uniform weights, while PESQ is 
an accumulated score along subbands with different weights 
according to psychoacoustics. Therefore, models minimizing 
MSE score do not guarantee to yield good PESQ score. 

CRGAN-EC-E obtains worse PESQ scores compared to 
CRNN and Multitask GRU, but it produces highest ERLE 
scores. Since noise is not considered and SER is not low in this 
experiment, high ERLE score does not make much sense. 
However, different metric losses provide additional freedom for 
the system to achieve specific goals. And metric loss of 
combined PESQ and ERLE could further achieve appropriate 
compromise between echo cancellation and target speech 
distortion. Due to limited space, only separate PESQ and ERLE 
results are shown here. 

We further study the impact of nonlinear acoustic path on 
our proposed method. In this test, 𝑥vw  was convolved with 
RIRs to generate the acoustic echo, and thus it contained both 
power amplifier clipping, and loudspeaker distortion. We again 
compare results of our method against CRNN and Multitask 
GRU. Table 3 shows the averaged PESQ and ERLE scores. 
Similarly, the Proposed CRGAN-EC-P achieves the best PESQ 
scores among all the methods and the ERLE scores are close to 
the best ones. Proposed CRGAN-EC-E yields the best ERLE 
scores. 

 
Table 3 PESQ and ERLE scores in nonlinear acoustic 

path scenarios 

Metrics Methods 
Testing SER (dB) 
0 3.5 7 

PESQ 

Unprocessed 1.68 1.91 2.18 
CRNN 2.38 2.69 2.94 
Multitask GRU 2.54 2.80 3.11 
CRGAN-EC-P 2.75 2.99 3.32 
CRGAN-EC-E 2.30 2.54 2.88 

ERLE 
(dB) 

Unprocessed 0 0 0 
CRNN 57.14 56.99 58.30 
Multitask GRU 55.30 56.23 57.02 
CRGAN-EC-P 57.01 57.89 58.26 
CRGAN-EC-E 62.71 64.30 66.93 

 

5. Conclusion 
In this study, we proposed a novel acoustic echo cancellation 
algorithm using convolutional recurrent GAN, that works well 
in both linear and nonlinear acoustic path scenarios. 
Convolutional layers extract the local correlations between 
microphone signal and reference signal, and the mapping 
between them. BLSTM layers capture the long-term temporal 
information. The proposed architecture is trained in frequency 
domain and predicts the time-frequency (TF) mask for the 
target speech. We deploy various metric loss functions and 
demonstrate the model robustness to the trade-offs between 
echo suppression and target speech distortion. As future works, 
we intend to extend our investigation of echo cancellation under 
more severe situations, especially delay-free scenarios. 
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