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Abstract
Acoustic echo cancellation (AEC) is used to cancel feedback
between a loudspeaker and a microphone. Ideally, AEC is a lin-
ear problem and can be solved by adaptive filtering. However,
in practice, two important problems severely affect the perfor-
mance of AEC, i.e. 1) double-talk problem and 2) nonlinear
distortion mainly caused by loudspeakers and/or power ampli-
fiers. Considering these two problems in AEC, we propose
a novel cascaded AEC which integrates adaptive filtering and
deep learning. Specifically, two long short-term memory net-
works (LSTM) are employed for double-talk detection (DTD)
and nonlinearity modeling, respectively. The adaptive filtering
is employed to remove the linear part of echo. Experimen-
tal results show that the proposed method outperforms conven-
tional methods in terms of the objective evaluation metrics by
a considerable margin in the matched scenario. Moreover, the
proposed method has much better generalization ability in the
unmatched scenarios, compared with end-to-end deep learning
method.
Index Terms: Acoustic echo cancellation, double-talk detec-
tion, deep learning, long short-term memory

1. Introduction
Acoustic echo widely exists due to coupling of the loudspeaker
and the microphone in the process of communication with full-
duplex hands-free devices, such as mobile telephony and tele-
conferencing system[1, 2, 3]. The microphone of these devices
which captures signals coming from its own loudspeaker can
produce uncomfortable echoes that seriously disturb the normal
communication. So an important issue that has to be addressed
is the acoustic echo cancellation (AEC). Ideally, AEC can com-
pletely remove acoustic echoes and transmit only the near-end
speech to the far-end. However, one of the major challenges
of AEC is to make it generalize well under such conditions as
double-talk, background noise and nonlinear distortion. This
study focuses on the generalization ability of AEC algorithm in
different scenarios, especially in low signal-to-echo ratio (SER)
conditions.

Although traditional AEC methods have been proposed to
deal with double-talk and noise in the past decades, most of
those methods are based either on correlation between signals,
or on statistical properties of speech and noise [4, 5, 6]. They
often fail to track non-stationary distortion in unexpected acous-
tic conditions, so the performance is severely affected by related
signal characteristics.

In the recent years, deep learning has achieved remarkable
results in the fields of speech recognition, and speech separa-
tion etc.[7, 8, 9]. More recently, Zhang and Wang [10] for-
mulated AEC as a supervised speech separation problem, in
which echo is considered as a special interfering noise. And
they employed a end-to-end deep learning structure to deal with
the problem. Lately, Zhang et al. [11] further developed a
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Figure 1: Block diagram of the proposed method in acoustic
echo scenario.

deep learning algorithm which considered the impacts of non-
linear distortions and additive noise. For learning-based algo-
rithm [10, 11, 12, 13, 14], the performance often drops in the
unmatched conditions (unseen samples in training stage) that
is called generalization problem. This problem is even serious
for AEC, because many factors can cause unmatched scenarios,
e.g. microphone, loudspeaker, environment noise and far-end
signals [15, 16, 17]. To improve the generalization, a direct
way is to collect as much training data as possible. However, it
pays huge cost.

In this paper, we propose a cascaded algorithm which com-
bines conventional adaptive filtering with deep learning. The
proposed algorithm consists of a linear-filtering model (LFM)
and a nonlinear-filtering model (NLM). In LFM, a LSTM is
employed as double-talk detector (DTD) to improve the perfor-
mance of adaptive filtering. With the output of the LFM, an-
other LSTM is trained to suppress the residual echo in the out-
put of the LFM. Experimental results show that the proposed
method outperforms the traditional methods in terms of the ob-
jective evaluation metrics in the matched scenario. Moreover,
we also find that the proposed method has good generalization
ability in the unmatched scenarios.

The rest of this paper is organized as follows. In Section 2,
we introduce the AEC system and present the proposed method.
The experimental setups are presented in Section 3. Experimen-
tal results and discussion are given in Section 4. Finally, Section
5 concludes the paper.

2. Algorithm description
2.1. System overview

The single-channel AEC method we proposed is depicted in
Figure 1. The microphone received signal y(n) consists of near-
end speech signal s(n) and echo signal d(n) which is generated
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Figure 2: Network architecture of LSTM for time-frequency
mask estimation.

by convolving a far-end signal x(n) with a room impulse re-
sponse (RIR) [18]:

d(n) = x(n) ∗ h(n) (1)

where * denotes the convolution operation, and h(n) is the
transfer function of actual echo transmission path. So, the y(n)
is obtained by:

y(n) = d(n) + s(n) (2)

The goal of AEC is to obtain s(n) by estimating h(n) using
y(n) and x(n). From Eq. (1) and (2), if there is no near-end
signal, h(n) is quite easy to estimate by using adaptive filter-
ing algorithms, e.g. least mean square (LMS), normalized least
mean square (NLMS) and recursive least square (RLS) [19, 20].

2.2. Linear-Filtering model (LFM)

However, when near-end signal and echo appear simultane-
ously, estimating h(n) becomes complicated. This is called
double-talk problem. A common strategy is to stop updating
h(n) when double talk happens. So, the accuracy of DTD has
huge impact on performance and convergence speed of AEC.
In this subsection, we introduce the approach for linear part of
AEC. The LFM consists of deep learning-based DTD and RLS
adaptive filtering.

2.2.1. Double-talk detection

The most effective way is to detect the double talk in time-
frequency unit level considering both performance and conver-
gence speed. So, we employ deep neural network to estimate
the time-frequency mask which is widely used in speech en-
hancement at present [21, 22]. The training target is defined by
Eq. (3) :

IRM(t, f) =

√
|D(t, f)|2

|S(t, f)|2 + |D(t, f)|2
(3)

where |S(t, f)| and |D(t, f)| denote the time-frequency (T-F)
unit of magnitude spectra at time t and frequency f of s(n) and
d(n), respectively.

All input signals are sampled to 16 kHz, and then divided
into frames with 20 ms window length and 10 ms offset, and
Hanning window is used. We apply the short-time Fourier
transformation (STFT) magnitude spectrum, only the first 161
frequency bins are used. In fact, IRM can be viewed as the
probability of echo appearing at T-F units. If IRM is close to
1, it means no near-end signal showing up. Otherwise, it means
that double talk happens.

To estimate the IRM, we use a recurrent neural network
with four LSTM layers with 300 units in each layer, which is
shown in Figure 2. A fully connected layer used for feature
extraction is taken as an input layer. The magnitude spectra of
y(n) and x(n) are concatenated as the input features which the
dimension is 161 × 2 = 322, and then fed into LSTM. We use
sigmoid activation function in the output layer which is fully
connected, and its dimension is 161, corresponding to a frame
of the estimated mask. Adam optimizer [23] is used to update
the weights of LSTM, and the mean squared error (MSE) is
used as the loss function. The learning rate, number of training
epochs and batch size are set to 0.0003, 50 and 32, respectively.

2.2.2. Adaptive filtering

RLS has an important feature that its convergence speed is much
faster than that of the standard LMS filter [19, 20], a frequency-
domain RLS adaptive filter with DTD is employed to remove
the linear echo components in microphone signal. The process
can be described as follows.

X(t, f) and Y (t, f) are the frequency-domain counterparts
of x(n) and y(n) at time-frame t and frequency bin f respec-
tively, and n being the time index. The cost function is a sum
of squared errors, as given below:

E(t, f) =

t−1∑
ν=0

βν
∣∣∣Y (t− ν, f)−WT (t− ν, f)X(t− ν, f)

∣∣∣2
(4)

where T is the transpose operations, β is the forgetting factor,
and W is the weight matrix. The optimization is to find a W to
minimize the E :

W (t, f) = H−1(t, f)P (t, f) (5)

where, H and P denotes the covariance matrix which are up-
dated by Eq. (6) and (7) if IRM(t, f) > LC. LC is local
criterion.

H(t, f) = βH(t− 1, f) +XT (t, f)X(t, f) (6)

P (t, f) = βP (t− 1, f) + Y T (t, f)X(t, f) (7)

If IRM(t, f) ≤ LC, the update formulas are Eq. (8) and (9) :

H(t, f) = H(t− 1, f) (8)

P (t, f) = P (t− 1, f) (9)

It means that we do not update the parameters when double talk
happens. The estimated frequency-domain echo signal D̂(t, f)
is obtained by:

D̂(t, f) = (H−1(t, f)P (t, f))TX(t, f) (10)

then, the estimated frequency-domain near-end signal G(t, f)
is given by:

G(t, f) = Y (t, f)− D̂(t, f) (11)

Accordingly, the LFM output time-domain signal g(n) is
synthesized fromG(t, f), using the inverse STFT (iSTFT) [24].
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It should be noticed that Eq. (10) includes an operation of ma-
trix inverse, which is time consuming particular for large ma-
trix. In practice, matrix inverse can be avoided by recursive
algorithm (the details of derivation shown in [20]).

2.3. Nonlinear-Filtering model (NFM)

Due to the nonlinearity of the speaker and/or amplifier, there
still exists residual echoes after LFM. In common, post-
processing module is required. In order to remove the residual
echoes, we train another LSTM which has the same structure as
the one used in double-talk detection except for inputs and train-
ing target. The inputs for the second LSTM are |G(t, f)|and
|Y (t, f)| which are the magnitude spectra of g(n) and y(n).
The training target is phase sensitive mask (PSM) [25, 26], as
given below:

PSM(t, f) = Re

{
|S(t, f)| ejθs
|G(t, f)| ejθg

}
=
|S(t, f)|
|G(t, f)| cos(θs − θg)

(12)

where |S(t, f)|and |G(t, f)| denote magnitude spectra of s(n)
and g(n), θs and θg denote the phases in the T-F unit, respec-
tively. Re{·} computes the real component. In the test stage,
the estimated magnitude spectrum of near-end signal |Ŝ(t, f)|
is obtained by:

|Ŝ(t, f)| = PSM(t, f)|G(t, f)| (13)

Finally, the estimated time-domain near-end speech signal
ŝ(n) is re-synthesized from |Ŝ(t, f)| combined with the phase
of G(t, f), using the iSTFT.

3. Experimental setups
3.1. Evaluation metrics

We use two metrics to evaluate the AEC performance: the echo
return loss enhancement (ERLE) [27] for single-talk periods
and the perceptual evaluation of speech quality (PESQ) [28] for
double-talk periods.

The ERLE measures the echo attenuation between micro-
phone signal y(n) and estimated near-end speech ŝ(n), which
is defined as:

ERLE = 10 log10

{
E
[
y2(n)

]
E [ŝ2(n)]

}
(dB) (14)

where E[·] denotes the statistical expectation operation.
PESQ uses a cognitive model to compute the disturbance

between the target speech and the processed speech, and it
ranges from -0.5 to 4.5. The larger the score, the better the
processed speech quality.

3.2. Datasets preparation

We use the TIMIT corpus [29], which consists of 630 speakers,
each containing 10 utterances, for a total of 6300 utterances that
sampled at 16 kHz. We first select 100 pairs of speakers as
far-end and near-end signals, respectively. For each pair, we
randomly select three utterances and concatenate them to form
the far-end signal. The near-end signal has the same length as
the far-end signal by adding zeros at both front and rear of the
signal. We generate 5200 pairs of signals in total. 4000, 900
and 300 utterances are used for training, validation and testing

respectively. It should be mentioned that the speakers in test set
don’t appear in training and validation sets.

We generate 7 different RIRs using the similar way reported
in the literature [10]. All room impulse responses are generated
by the image method [30] with reverberation time (T60) being
200 ms, and the reflection order of RIR is set to 512. The sim-
ulation room size (length × width × height) is (4 × 4 × 3)
m. Microphone is fixed at the center location of the room. A
loudspeaker is placed at 7 random locations with 1.5m distance
from the microphone. And we randomly choose 6 RIRs to gen-
erate echo signals for training, and use the remaining RIR for
testing.

For training and validation sets, we generate the micro-
phone signals at SER level randomly chosen from {-6, -3, 0,
3, 6}dB, by mixing the near-end speech signal and echo signal.
The SER level here is evaluated in the double-talk period. It is
defined as:

SER = 10 log10

{
E
[
s2(n)

]
E [d2(n)]

}
(dB) (15)

And for testing mixtures, we generate the microphone sig-
nals at four different SER levels {-10, -5, 0, 5}dB.

3.3. Comparison methods and parameter settings

We compare our approach with two AEC algorithms. 1) NCC-
NLMS: the conventional NLMS combined with the normalized
Cross Correlation DTD [5]. The filter size is set to 512, the
step size and the regularization factor are set to 0.2 and 0.06,
respectively. 2) End-to-end learning method: directly estimate
the PSM of near-end signal using far-end and microphone sig-
nals as input by LSTM. The LSTM has four hidden layers with
300 units in each layer. A fully connected layer used for fea-
ture extraction taken as LSTM input layer that have 322 units.
Sigmoid activation function used in a fully connected output
layer that have 161 units.

4. Evaluation and comparison
4.1. Performance in double-talk situations

For the first experiment, we evaluate the proposed method in
double-talk situations which can be treated as the matched sce-
nario.

Table 1: Average ERLE and PESQ scores in speech echo.

SER -10dB -5dB 0dB 5dB

ERLE

None — — — —
NCC-NLMS 13.86 13.82 13.76 13.68
LSTM(end-to-end) 20.48 23.36 28.68 28.09
LFM-NFM(pro.) 31.56 36.59 38.65 38.42

PESQ

None 1.21 1.59 1.95 2.28
NCC-NLMS 1.84 2.16 2.51 2.82
LSTM(end-to-end) 1.49 1.81 2.16 2.49
LFM-NFM(pro.) 2.31 2.79 3.18 3.50

Table 1 shows the average ERLE and PESQ scores of
these methods in different SER conditions, where the results of
‘None’ (i.e. unprocessed speech) are calculated by comparing
the y(n) with s(n) in the double-talk periods. The best scores in
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each case are highlighted by boldface. In this table, the results
demonstrate that all methods are capable of removing acoustic
echoes. Taking the 0 dB SER case for example, it shows that go-
ing from LFM-NFM to NCC-NLMS improves ERLE by 24.89
and PESQ by 0.67. And our proposed algorithm significantly
outperforms others in both metrics.

4.2. Performance of music echo

In training stage, the far-end signals are speech. In practice,
music is also a very common echo. This experiment is to eval-
uate the generalization performance of AEC to music signals.
We use GTZAN music library (available at http://marsyas.info),
which contains 1000 different songs in 10 different genres with
100 songs in each genre and each song lasting about 30 seconds.
We randomly select 300 songs, and resample at 16kHz.

Table 2: Average ERLE and PESQ scores of music echo.

SER -10dB -5dB 0dB 5dB

ERLE

None — — — —
NCC-NLMS 17.57 17.49 17.42 17.25
LSTM(end-to-end) 29.17 26.16 21.72 17.02
LFM-NFM(pro.) 22.72 23.57 24.47 25.47

PESQ

None 1.17 1.53 1.88 2.21
NCC-NLMS 1.46 1.79 2.13 2.47
LSTM(end-to-end) 0.98 1.20 1.46 1.58
LFM-NFM(pro.) 2.38 2.70 2.93 3.05

The results of these methods in different SER conditions
with background music echoes are shown in Table 2. Note that
in the table, when the score of the PESQ of each algorithm is
lower than ’None’, we consider the algorithm to be invalid and
the scores are shown with italics. From the table, we can see
that LSTM is invalid for untrained music echoes. We can also
find that the NCC-NLMS works well when dealing with non-
stationary echo. In the case of 0 dB SER, it shows that the
proposed LFM-NFM improves ERLE by 7.05 and PESQ by 0.8
to compared with NCC-NLMS. The proposed method consis-
tently outperforms the conventional methods, and the perfor-
mance generalizes well in untrained music echoes and SERs
conditions.

4.3. Performance in unseen condition with nonlinear echo

In practice, loudspeaker and amplifier often cause nonlinearity.
To test the generalization ability of the proposed algorithm, we
follow the approach in literature [10, 12] to simulate the seri-
ously nonlinear distortion echo captured by the microphone af-
ter passing through a power amplifier, a loudspeaker and acous-
tic transmission in order.

Firstly, the nonlinearity of power amplifier can be modeled
using the hard-clipping way [31] by:

xhard(n) =

−xmax x(n) < −xmax

x(n) |x(n)| ≤ xmax

xmax x(n) > xmax

(16)

where xhard(n) is the outputs of hard-clipping, and xmax(n)
is set to 80% of the maximum value of the input signal. Then,
in order to simulate an asymmetric loudspeaker distortion, we
apply the following memoryless sigmoid nonlinearity function

[32] to the far-end signal:

xNL(n) = γ

(
1

1 + e(−p·q(n))
− 1

2

)
(17)

where

q(n) = 1.5× xhard(n)− 0.3× x2hard(n) (18)

and the parameter γ is the sigmoid gain and it is set equal to
2, p represents the sigmoid slope and shown as:

p =

{
4 q(n) > 0
0.5 q(n) ≤ 0

(19)

Accordingly, the nonlinear distortion echo signals are gen-
erated by the xNL(n) convolving with RIRs.

It should be mentioned that we do not add any nonlinearity
in training stage.

Table 3: Average ERLE and PESQ scores in nonlinear situa-
tions.

SER -10dB -5dB 0dB 5dB

ERLE

None — — — —
SVAF 11.68 11.25 10.11 9.86
LSTM(end-to-end) 12.61 14.62 14.34 14.16
LFM-NFM(pro.) 12.22 15.34 17.41 18.45

PESQ

None 1.17 1.53 1.88 2.21
SVAF 1.29 1.33 2.09 2.23
LSTM(end-to-end) 1.25 1.56 1.92 2.30
LFM-NFM(pro.) 1.53 1.94 2.31 2.67

Since the NLMS is not capable of dealing with nonlinear
distortions, second-order Volterra adaptive filter (SVAF) [33] is
employed to cancel the nonlinear echo in the microphone sig-
nal. The length of first order Volterra kernel is set to 512, sec-
ond order length is 64, and the learning rate are set to 0.2 and
0.1, respectively. Table 3 shows the average ERLE and PESQ
scores of these methods in different SER conditions with non-
linear distortions. Although the LSTM method has the strongest
suppression of noise (12.61 dB for ERLE), its damage to near-
end signal is the most serious (1.25 for PESQ). It can also be
seen that the proposed method performs best in this nonlinear
situation.

5. Conclusions
In this study, we propose a cascaded method to make AEC more
robust. Different from traditional algorithms, the AEC problem
is treated as a supervised learning task by predicting IRM for
double-talk detection and PSM residual echo suppression. Ex-
perimental results show that proposed method outperforms the
traditional methods in terms of the objective evaluation metrics
in the matched scenario. Moreover, the results also show that
the proposed method can significantly improve the removal of
acoustic echo in the unmatched scenarios, and has good gener-
alization performance, especially in low SER conditions, which
is a promising sign for the practical use of AEC.
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