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Abstract

In this study, we propose a neural-network-based virtual acous-
tic channel expansion (VACE) framework for weighted predic-
tion error (WPE)-based speech dereverberation. Specifically,
for the situation in which only a single microphone observation
is available, we aim to build a neural network capable of gener-
ating a virtual signal that can be exploited as the secondary input
for the dual-channel WPE algorithm, thus making its derever-
beration performance superior to the single-channel WPE. To
implement the VACE-WPE, the neural network for the VACE
is initialized and integrated to the pre-trained neural WPE algo-
rithm. The entire system is then trained in a supervised manner
to output a dereverberated signal that is close to the oracle early
arriving speech. Experimental results show that the proposed
VACE-WPE method outperforms the single-channel WPE in a
real room impulse response shortening task.
Index Terms: speech dereverberation, weighted prediction er-
ror, neural network, multi-channel linear prediction

1. Introduction
Speech dereverberation aims to remove or suppress the late re-
verberation component in a speech signal captured by distant
microphones in a reverberant enclosure. Among the various
techniques employed, the weighted prediction error (WPE) [1]
algorithm, which blindly estimates a reverberation filter in an
iterative manner, has been widely used as the front-end to im-
prove the robustness of speech-triggered applications [2, 3]. In
general, when multi-channel speech signals are available, the
multi-input multi-output (MIMO) WPE will be superior to its
single-channel counterpart, as it can benefit from the underly-
ing multi-channel linear prediction (MCLP) algorithm to ex-
ploit the different diffuse patterns of the late reverberation ob-
served through multiple microphones. However, for small elec-
tronic devices, installing more than one microphone may not be
feasible owing to the extra cost of expanding the microphone
channels.

In this context, to utilize the MIMO WPE algorithm to
dereverberate a single-channel observation effectively, we pro-
pose a neural-network-based virtual acoustic channel expansion
(VACE) framework. The main concept of the proposed VACE
technique is the generation of a virtual signal that can assist the
dual-channel WPE to output an actual signal “dryer” than that of
the single-channel WPE from a given observation. To this end,
we first pre-train the constituent networks for the neural WPE
[2] and VACE to build the dual-channel VACE-WPE system,
and subsequently fine-tune the neural network for the VACE to
dereverberate the observed single-channel signal. The proposed
VACE-WPE method is compared with the single-channel and
actual dual-channel WPE algorithms for a real room impulse

response (RIR) shortening task, and the results are evaluated in
terms of various objective speech quality metrics.

2. Related work
A series of studies conceptually relevant to the proposed frame-
work can be found in [4, 5, 6]. In [4], the so-called virtual
microphone technique was proposed, whereby multiple sets of
the amplitude and phase of a virtual signal in the short-time
Fourier transform (STFT) domain are generated through the
complex logarithmic interpolation of dual-microphone observa-
tions. In [5], the amplitude interpolation method was improved
by minimizing the β-divergence between the virtual and actual
microphone signal amplitudes, which was further extended by
exploiting a convolutional neural network as the amplitude es-
timator [6]. The virtual microphone technique was shown to be
effective for providing informative auxiliaries to some types of
beamformers for speech enhancement [4, 5, 6]. Nonetheless, in
this work, we investigate a neural-network-based single-to-dual
acoustic channel expansion for WPE-based speech dereverbera-
tion without any constraints regarding the microphone array ge-
ometry. Accordingly, we use the term virtual acoustic channel
rather than virtual microphone, as the generated virtual signal is
not constrained to a specific microphone arrangement.

3. System overview
3.1. Signal model

In this study, we only consider the scenario in which a speech
signal is captured by a single microphone in a noiseless rever-
berant enclosure. However, as our aim is to generate a vir-
tual secondary signal to compose a dual-channel input for the
MIMO WPE algorithm, we present a signal model for the multi-
microphone scenario as an extension of the single-microphone
case. In the STFT domain, the signal model is represented as
follows:

Xt,f = X(early)
t,f + X(late)

t,f , (1)

where Xt,f is the D-channel stack of the microphone observa-
tions, and X(early)

t,f and X(late)
t,f are the early arriving speech and the

late reverberation, respectively. Herein, the former is assumed
to be obtained upon convolution of the source speech with the
RIR truncated up to the point 50 ms after the main peak, while
the remaining part is responsible for the latter.

3.2. Neural WPE algorithm

In a vein similar to that described in Section 3.1, we describe
the MIMO WPE algorithm, whose single-channel version can
easily be obtained by setting the number of microphones, D,
to 1. The classical WPE uses the MCLP technique to esti-
mate the late reverberation component, X(late)

t,f , and cancels it out
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Figure 1: Architecture of the VACE network.

from the observation; the dereverberated output is assumed to
be sampled from a zero-mean complex Gaussian distribution
with time-varying variance [1]. The linear prediction (LP) fil-
ter coefficients are calculated to obtain the maximum likelihood
estimate of the early arriving speech, X(early)

t,f , following the iter-
ative procedure described below:

Step 1) λt,f =
1

D

∑
d

|Zd,t,f |2, (2)

Step 2) Rf =
∑
t

X̃t−∆,f X̃H
t−∆,f

λt,f
∈ CDK×DK , (3)

Pf =
∑
t

X̃t−∆,fXH
t,f

λt,f
∈ CDK×D, (4)

Gf = R−1
f Pf ∈ CDK×D, (5)

Step 3) Zt,f = Xt,f −GH
f X̃t−∆,f , (6)

where Zt,f is the estimated early arriving speech, d is the micro-
phone channel index, λt,f is the average power spectral density
(PSD) of Zt,f ,K is the order of the LP filter, ∆ is a delay for the
LP, and X̃t−∆,f and Gf are the stacked representations (from
∆-th to (∆ + K − 1)-th past time frames) of the observation
and the filter coefficients, respectively.

Unlike the classical WPE, the neural WPE [2] employs a
pre-trained neural network to estimate the PSD of the early ar-
riving speech in a channel-independent manner, which allows
for iteration-free calculation of the LP filter. Specifically, in
this study, we train the neural network to estimate the log-scale
power spectra (LPS) ofX(early)

d,t,f given the LPS ofXd,t,f by min-
imizing the mean squared error (MSE) between the estimated
and the oracle early arriving speech. Note that we only con-
sider the offline processing scenario of a full utterance using the
batch-mode WPE.

3.3. Neural network for the VACE

3.3.1. Network architecture

Inspired by recent studies on phase-aware speech enhancement
[7, 8, 9], we opt to use the real and imaginary (RI) components
of the STFT coefficients as the input and output representations
of the VACE network (VACENet). Our choice for the network
architecture involves a convolutional encoder–decoder structure
similar to the U-Net [10] but with a few modifications as listed
below:

• we use convolutions with the stride of 2 for downsampling
instead of max-pooling (MaxPool).

• gated linear units (GLU) [11] are used instead of simple
convolutions, except for those for downsampling and up-
sampling.

• we use 1×1 convolutions in the bottleneck of the network.

• for the expansive path, we use separate decoder streams
for estimating the RI components, as advised in [7].

The rest of the structure is the same as that of the U-Net, in-
cluding the number of downsampling and upsampling opera-
tions and positions of the concatenations between the encoder
and the decoder feature maps. A sketch of the architecture is de-
picted in Fig. 1, where the rectangles denote the feature maps,
whose height and width represent their relative size and depth,
respectively. Each of the wide arrows represents a 2D convolu-
tion (Conv2D) with a kernel size of 3, and ⊕ denotes the con-
catenation of the feature maps along the depth axis.

3.3.2. Loss function

In a spirit similar to that of the multi-metrics learning approach
[8], we define the loss function for training the VACENet as
a combination of the losses computed in various domains of
the signal representations. To be more specific, the loss func-
tion comprises a frequency-domain loss and a time-domain loss,
each of which is defined as follows:

Lfreq
1 (A,B) = MSE(Ar, Br) + MSE(Ai, Bi)

+ α ·MSE(ln|A|, ln|B|),
(7)

Ltime
1 (a, b) = MAE(a, b), (8)

L1(A,B) = Lfreq
1 (A,B) + β · Ltime

1 (a, b), (9)

whereA andB are the STFT-domain representations, ln|A| and
ln|B| are the log-scale magnitudes, a and b are the time-domain
signals obtained by taking the inverse STFT of A and B, re-
spectively, the superscripts r and i denote the RI components,
respectively, α and β are scaling factors to control the scales
between the losses defined in different domains of the signal
representations, and MAE(·, ·) computes the mean absolute er-
ror between the inputs.

3.3.3. Pre-training

Before the VACENet is trained to generate a valid virtual sig-
nal that can facilitate dereverberation of the observed single-
channel speech via the MIMO WPE, it is necessary to set an
appropriate initial point of the network to avoid divergence. In
this study, we simply choose to pre-train the network by per-
forming a self-regression task, under the assumption that the
actual dual-channel speech recordings may not deviate signifi-
cantly from each other. Given the single-channel observation,
X1, the output of the VACENet, Xv , can be represented as fol-
lows:

Xv = F(X1; Θ), (10)

where F(·; Θ) denotes the VACENet parameterized by Θ. In
the pre-training stage, the neural network is trained to minimize
L1(Xv, X1).

3.3.4. Fine-tuning

After the initialization is completed, the VACENet is inte-
grated to the pre-trained neural WPE algorithm, as depicted in
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Figure 2: Block diagram of the proposed VACE-WPE system.

Fig. 2. The virtual signal,Xv , is directly introduced to the dual-
channel WPE with the observed signal, X1, both of which are
also passed through the early speech LPS estimation model (LP-
SNet). Note that the parameters of the LPSNet are not subject
to training and are hence frozen in the fine-tuning stage. The
outputs of the LPSNet are converted back to a linear scale, av-
eraged for each time-frequency unit, and used as the PSD es-
timate required in (2). Finally, the entire system is trained to
output the dereverberated signal close to the oracle early arriv-
ing speech via minimization of the following loss function:

L = L1(Z1, X
(early)
1 ), (11)

where Z1 denotes the output signal of the dual-channel VACE-
WPE corresponding to the actual input signal, X1. Notice
that we also depicted the single-channel neural WPE method
in Fig. 2, which is the target algorithm to be compared with the
proposed dual-channel VACE-WPE method.

4. Experimental setup
4.1. Dataset

All the experiments were conducted on the TIMIT [12] corpus,
where we excluded the common-transcript utterances from the
whole dataset in advance. For the training, we also removed the
utterances with durations of less than 2.8 s and cut out a small
portion for validation purposes. Consequently, we obtained a
training set of 3,023 utterances from 462 speakers, a validation
set of 458 utterances, and a test set comprising 1,344 utterances
from 168 speakers.

To prepare the reverberated speech for training the VACE-
WPE system, we used the simulated RIR dataset of [13], which
is widely used for data augmentation in Kaldi’s speech and
speaker recognition recipes [14]. Among the small, medium,
and large room RIRs, we excluded the small room RIRs, and
selected 16,200 medium room and 5,400 large room RIRs for
training; 1,800 medium room and 600 large room RIRs were
selected for validation. For the evaluation, we used real RIRs
taken from the REVERB Challenge 2014 [15] dataset. As
described in [15], the dataset contains eight different RIRs
for each of the small, medium, and large room environments,
whose reverberation times (T60) are about 0.25, 0.5, and 0.7 s,
respectively. Three different test speech datasets were prepared
for each of the room conditions with different reverberation lev-
els, and only the first of the eight microphone channels was used
for data preparation.

4.2. Model specifications

The speech signals sampled at 16 kHz were converted to the
STFT domain using the 64 ms Hann window with a hop size of
16 ms. Accordingly, the 513-dimensional LPS and the stack of
513-dimensional RI components were used as the input features
for the LPSNet and VACENet, respectively.

For the LPSNet architecture, we adopted the dilated convo-
lutional network proposed in [16]. This consists of a series of
Conv2D and MaxPool operations, followed by a stack of dilated
1D convolution (Conv1D) blocks, and finally a fully-connected
output layer. We slightly modified the original model by reduc-
ing the kernel size of the Conv2D from (9, 9) to (5, 5) and the
number of feature maps from (32, 64) to (24, 48), while the
number of dilated Conv1D blocks was increased from 2 to 4.
The input LPS features were normalized using a trainable batch
normalization (BN) [17] layer. For more details regarding the
network architecture, please refer to [16].

For the VACENet, we also applied the BN at the input
layer separately to each attribute of the RI components, whereas
each of the output RI components were denormalized using the
global mean and variance statistics precomputed from a number
of RI components of the reverberated speech signals. Mean-
while, in a complete VACE-WPE system, we set the LP param-
eters of the batch-mode WPE to (∆,K) = (3, 20).

4.3. Training

We used an on-the-fly data generator for the mini-batch compo-
sition. Specifically, a speech utterance was randomly selected
from the entire training set and cropped to a 2.8-s-long excerpt,
convolved with a randomly chosen RIR, and then converted to
STFT coefficients; four of such excerpts were gathered to com-
pose a single mini-batch. A single training epoch was defined
as the iterations over 6,000 mini-batches.

We used α = 0.3 and β = 20 in (7) and (9), whose val-
ues were determined by monitoring the first few iterations of
the training. All the networks were trained using the Adam
optimizer [18]. The initial learning rates for both the LPSNet
and the VACENet were set to 10−4 and 5 · 10−5 in the pre-
training and fine-tuning stages, respectively, and annealed by
half whenever the validation loss did not improve for two con-
secutive epochs. In addition, dropout [19] and gradient clipping
[20] were critical for regularizing and stabilizing the training,
where we set the dropout rate to 0.3 and the global norm thresh-
old to 3.0. The weights of the networks were also l2-regularized
with the scale of 10−5.

Finally, the LP order was set to 10 instead of 20 during the
training, which we empirically found to be more effective to
train the VACE-WPE system.

4.4. Evaluation

The proposed system was compared with both the single-
channel WPE and the dual-channel WPE employing the ac-
tual second-channel speech signal. Herein, the actual second-
channel signal was obtained by convolving the source speech
with the test set RIRs taken from the fifth of the eight micro-
phone channels, which is located at the side opposite to the first
microphone [15]. For the single-channel WPE, we set the LP
order to 60. The dereverberation performance was evaluated
in terms of the perceptual evaluation of speech quality (PESQ)
[21], cepstrum distance (CD), log-likelihood ratio (LLR) [22],
and non-intrusive signal-to-reverberation modulation energy ra-
tio (SRMR) [23]. Note that because the objective of the WPE
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Table 1: Performance of the dereverberation systems under the different room environments.

Model Small Medium Large

PESQ CD LLR SRMR PESQ CD LLR SRMR PESQ CD LLR SRMR

Unprocessed (x1) 3.34 0.56 0.03 3.27 2.05 1.84 0.17 2.63 1.75 2.37 0.25 2.39
Single-channel WPE (z0) 3.86 1.54 0.09 3.39 3.07 1.63 0.12 3.13 2.71 1.71 0.14 2.99
VACE-WPE (z1) 3.93 1.22 0.06 3.39 3.19 1.41 0.11 3.27 2.87 1.53 0.13 3.30
VACE-WPE (zv) 1.11 4.65 0.93 2.36 1.20 4.08 0.73 2.31 1.20 4.16 0.72 2.11
Dual-channel WPE (actual) 3.86 1.05 0.05 3.38 3.31 1.20 0.08 3.28 2.96 1.32 0.10 3.11

Figure 3: Sample spectrograms in the large room condition.

algorithm is to obtain the early arriving speech, we used x(early)
1

as the reference signal for the computation of the first three met-
rics.

5. Results and analysis
Table 1 summarizes the performance of the various dereverber-
ation systems. In the second row, the output signal of the single-
channel neural WPE is denoted as z0. In the third and the fourth
rows, the actual and virtual signal outputs of the VACE-WPE
are refered to as z1 and zv , respectively, whereas the last row
represents the first-channel output of the dual-channel neural
WPE employing the actual second-channel signal as the input.
Herein, we first analyze the results in the medium and large
room environments, followed by the results in the small room.

Firstly, in the medium and large room conditions, compar-
ing the first three rows indicates that both the WPE algorithms
have certainly improved the quality of the unprocessed signal
(x1). Moreover, the proposed VACE-WPE (z1) method out-
performed the single-channel WPE (z0) in terms of all of the
evaluation metrics, which implies that the VACENet is capable
of generating a virtual signal that is effective as the secondary
input for the dual-channel WPE. Still, the dual-channel WPE
fed with the actual dual-channel input signals was superior to
the VACE-WPE with respect to most of the metrics. On the
contrary, the virtual signal output of the VACE-WPE (zv) re-
vealed considerably different characteristics relative to the rest
of the dereverberated signals. In fact, zv showed the worst per-
formance compared to all the other candidates in terms of all
of the evaluation metrics, and was even inferior to the unpro-
cessed signal. To visualize the spectral characteristics of the
virtual signals, we plotted sample spectrograms of the input and
output signals of the VACE-WPE in the large room environ-

ment in Fig. 3. As seen in the figure, the spectrograms of xv
and zv do not exhibit the spectral patterns similar to those of
the spectrograms of x1 and z1, respectively. Nonetheless, the
“traces” of the spectra of x1 have been reduced in z1 over the
entire frequency region.

Secondly, in the small room environment, the overall signal
quality was much better than that measured in the medium or
large room conditions. The proposed VACE-WPE (z1) showed
comparable performance to the single-channel and the actual
dual-channel WPE methods in terms of the SRMR, while being
slightly superior with regard to the PESQ. In contrast, the rever-
berated signal (x1) exhibited the lowest CD and LLR metrics,
which may be because the LP orders of the WPE algorithms set
for the inference are too large, hence leading to overestimation
of reverberation as well as speech distortion; another possible
reason is that the small room acoustics are unseen during the
training of the LPSNet and VACENet, which may somehow de-
teriorate the neural WPE systems. Meanwhile, zv showed a
similar pattern to that described in the larger rooms.

In summary, we conjecture that the VACENet simply learns
to generate an auxiliary signal that can assist the single-channel
signal in such a way as to obtain a better estimate of the late
reverberation component within the MIMO WPE framework,
rather than learning to generate a secondary signal that is ob-
servable within a specific microphone arrangement. This may
be possible because the underlying algorithm of the MIMO
WPE is the MCLP, which is clearly different from that of the
single-channel WPE, thus providing a room for improvement
over the single-channel counterpart and enabling the neural net-
work to solve the many-to-one mapping problem of finding the
early arriving target speech via the MCLP given the reverber-
ated observations.

6. Conclusions
In this study, we investigated the feasibility of improving the
single-channel neural WPE dereverberation algorithm by aug-
menting the monaural speech signal with a virtual signal gen-
erated by a neural network, and then passing them through the
dual-channel WPE. Regularizing the training of the VACENet
by reinforcing the training loss functions with physically mean-
ingful constraints or extending the current VACE framework to
beamformers for speech enhancement could be directions for
future work.
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