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Abstract

In this paper, a Wave-U-Net based acoustic echo cancellation
(AEC) with an attention mechanism is proposed to jointly sup-
press acoustic echo and background noise. The proposed ap-
proach consists of the Wave-U-Net, an auxiliary encoder, and an
attention network. In the proposed approach, the Wave-U-Net
yields the estimated near-end speech from the mixture, the aux-
iliary encoder extracts the latent features of the far-end speech,
among which the relevant features are provided to the Wave-U-
Net by using the attention mechanism. With the attention net-
work, the echo can be effectively suppressed from the mixture.
Experimental results on TIMIT dataset show that the proposed
approach outperforms the existing methods in terms of the echo
return loss enhancement (ERLE) for the single-talk period and
the perceptual evaluation of speech quality (PESQ) score for the
double-talk period. Furthermore, the robustness of the proposed
approach against unseen noise condition is also validated from
the experimental results.

Index Terms: Acoustic echo cancellation, Wave-U-Net, auxil-
iary encoder, attention mechanism

1. Introduction

In many applications such as hands-free telephones, au-
dio/video conferencing systems, and hearing aids, acoustic echo
occurs due to coupling between a loudspeaker and a micro-
phone in a communication system. That is, if the microphone
picks up the far-end speech from the loudspeaker, the far-end
user hears an echo of his/her own voice. In this case, it is de-
sirable to eliminate the echo and to deliver the clean near-end
speech only to the far-end user. Furthermore, suppressing the
echo has been more challenging due to the nonlinear distortion
produced by the miniaturized speakers in audio devices such as
mobile phones [1].

The conventional approach to the acoustic echo cancella-
tion (AEC) is to employ adaptive filter algorithms for estimating
the acoustic echo path from the loudspeaker to the microphone.
Various adaptive filter based AEC algorithms have been pro-
posed to improve the performance when the double-talk occurs,
the background noise coexists, or the non-linear echo arises. To
resolve the double-talk issue, the adaptive filter can be associ-
ated with the double-talk detectors to stop the filter adaptation
during the double-talk, or the adaptive filter itself can be de-
vised to be robust against the double-talk by adopting the ro-
bust criterion such as £;-norm based minimization [2]. When
the echo and background noise coexist, the noise suppression
module is independently developed and simply combined with
the echo suppression module in a serial fashion, which gives
the sub-optimal performance only since the overall performance
depends on its integrated structure [3]. Moreover, the non-linear
distortion due to the loudspeakers can be also introduced in the
AEC system. To overcome this difficulty, several non-linear
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models such as the Volterra model, the Hammerstein model,
and neural networks have been utilized [4]. Despite such a lot
of works, the adaptive filtering approach still has not shown sat-
isfactory results in various real environments.

Recently, deep neural networks (DNN) have been received
much attention due to their complicated non-linear modeling
capacity, and they have been successfully applied to various
speech signal processing tasks such as speech enhancement,
source separation, and AEC. In the AEC applications, the DNN
based residual echo suppression (RES) was introduced to es-
timate the optimal RES gain by using the residual echo and
far-end speech [5]. In [3], a stacked DNN model in a sequen-
tial manner, one for noise suppression and another for acous-
tic echo suppression, was developed to simultaneously suppress
the acoustic echo and background noise. Furthermore, a bidi-
rectional long-short term memory (LSTM) based model was
also presented to estimate an ideal ratio mask for resynthesiz-
ing the near-end speech from the magnitude spectrum of the
mixture signal [6]. The convolutional recurrent network (CRN)
with an LSTM based speech detector was recently proposed
in [7], where the CRN estimates the complex spectrogram of
the near-end speech from those of the far-end speech and mix-
ture signal, and the LSTM based speech detector estimates the
activity of the near-end speech to further suppress the residual
echo and noise during the single-talk period. In [8], a deep gated
recurrent unit (GRU) based network was introduced with the
multitask learning of estimating both acoustic echo and near-
end speech.

However, the aforementioned algorithms [3, 5-8] are
mostly performed in the short time Fourier transform (STFT)
domain, which means that their performance can be degraded
due to several reasons such as the performance dependency on
the frame size and no available correct phase information [9].
To tackle this problem, several time-domain based networks
have been recently proposed and they have shown superior per-
formance relative to the STFT domain counterparts in various
fields [9-11].

Inspired by the success of the time-domain approach, we
propose an attention Wave-U-Net for the AEC application. The
Wave-U-Net [9], operated in the time-domain, was originally
devised for the audio separation, and its variations have been
successfully applied in other areas [11-13]. Compared with the
Wave-U-Net, the proposed approach includes an auxiliary en-
coder to extract the features of the far-end speech. The extracted
features by the auxiliary encoder are delivered into the Wave-
U-Net by exploiting the attention mechanism [13], which effec-
tively suppresses the echo in the latent space. The effectiveness
of the attention mechanism is verified by the experimental re-
sults. Furthermore, it will be also shown that the proposed ap-
proach produces a similar performance on both seen and unseen
noise conditions, which verifies its robustness against unseen
noise condition.
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Figure 1: Structure of the proposed attention Wave-U-Net. In
1D convolution block, three numbers in the parentheses repre-
sent number of channel, kernel size, and stride of 1D convolu-
tion, respectively.

This paper is organized as follows: In Section 2, the prob-
lem of the AEC is briefly defined. Then, the Wave-U-Net based
AEC is proposed along with the attention mechanism in Sec-
tion 3. In Section 4, several experimental results are provided
under various AEC environments to verify the performance of
the proposed approach. Finally, conclusion remarks are given
in Section 5.

2. Problem statement

In the AEC application, the mixture signal y(n) is composed
of acoustic echo d(n), near-end speech s(n), and background
noise v(n) as follows:

y(n) = d(n) + s(n) +v(n). (1

The acoustic echo d(n), which can be also non-linearly dis-
torted by the loudspeaker, is a modified version of the far-end
speech by a room impulse response (RIR). The purpose of the
AEC is to estimate the clean near-end speech s(n) from the
mixture y(n) by jointly suppressing the acoustic echo d(n) and
background noise v(n).

3. Proposed attention Wave-U-Net

3.1. Overall structure

In this section, the attention Wave-U-Net is proposed for the
AEC application, as illustrated in Figure 1. The proposed struc-
ture consists of the Wave-U-Net, auxiliary encoder, and atten-
tion network. In the Wave-U-Net, the mixture signal is fed as
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Figure 2: Structure of attention network.

an input, and the near-end speech is estimated as an output. In
the auxiliary encoder, the far-end speech is encoded by using
the same encoder structure as that of the Wave-U-Net and its
meaningful features are given to the Wave-U-Net through the
attention network, which efficiently suppresses the echo from
the mixture signal.

There are several distinct characteristics between the origi-
nal Wave-U-Net and the proposed attention Wave-U-Net. First,
since the Wave-U-Net is originally designed for the audio
source separation problem; thus, it takes a single input of the
mixture signal and gives multiple outputs of separated signals.
In the proposed approach, the attention Wave-U-Net accepts
a mixture signal at the Wave-U-Net and a far-end speech at
the auxiliary encoder, and estimates a near-end speech at the
Wave-U-Net. Second, compared with the original Wave-U-Net,
the proposed attention Wave-U-Net has the auxiliary encoder
to yield the latent features of the far-end speech. Third, in-
spired by the attention mechanisms [13], the meaningful fea-
tures of the far-end speech are accentuated by using the atten-
tion network. Then, the accented features of the far-end speech
are concatenated with those of the mixture in the same " en-
coder layer of the Wave-U-Net, and the concatenated features
are passed through the encoder of the Wave-U-Net to extract
the relevant features in the latent space. Finally, with the ex-
tracted features from the encoder, the clean near-end speech is
recovered through the decoder of the Wave-U-Net.

3.2. Attention network

As aforementioned above, the proposed architecture employs
the attention mechanism [13] to identify the related features
from the far-end speech in the latent space, which leads to im-
proved performance. As shown in Figure 2, the latent features
of the far-end speech in the 7*" layer and those of the mixture in
the (i — 1)*" layer are first mapped to an intermediate feature
space with the same u-dimension by using a 1-D convolution
with the kernel size 1 and a bias term. Here, u can be set to the
minimum of the two input channel dimensions. After passing
through exponential linear unit (ELU) activation function and
adding them, they are additionally mapped to 1-dimensional
feature space by using another 1-D convolution with the ker-
nel size 1 and a bias term to yield the attention mask. Finally,
the features of the far-end speech are element-wisely multiplied
with the obtained attention mask, and then the masked fea-
tures are concatenated with those of the i** encoder layer of
the Wave-U-Net.



3.3. Loss function

In the regression task, the signal-to-distortion ratio (SDR) has
been widely used as a loss function. Therefore, the proposed
algorithm minimizes the negative SDR function to train the at-
tention Wave-U-Net. The SDR function is defined as follows:

[EDIE
N )
Is(n) = 3(n)|I*
where ||-|| denotes £2-norm function, and §(n) is the estimated
near-end speech.

SDR = 10log,, )

4. Experimental results
4.1. Experiment settings

To verify the performance of the proposed attention Wave-U-
Net, the similar settings as in [7, 8] were taken for the experi-
ment. Specifically, the TIMIT dataset was utilized as the far-
end and near-end speeches. Among 630 speakers in total, 100
pairs of farend-nearend speakers (i.e., 40 male-female, 30 male-
male, 30 female-female) were randomly selected for training.
To generate a far-end speech, three randomly chosen utterances
of the same far-end speaker were concatenated. For each near-
end speech, one utterance was randomly selected and extended
to the same length as that of the far-end signal by padding zero.
For each far-end speaker, five different far-end speeches were
created, and seven different near-end speeches were generated
for each near-end speaker, which results in 3500 train mixtures
(about 9 hours) in total. For the validation and test, 30 pairs
of far-end and near-end speakers were randomly selected from
the remaining 430 speakers. In this time, five different near-
end speeches were mixed with three different far-end speeches,
which results in 450 mixtures for validation and test, respec-
tively.

To model the non-linearity of the AEC system, the far-end
signal z(n) was further clipped and distorted as follows:

—Zmax; if fl;(n) < —Tmax,
mCl(n) = .ZE(TL), if |ZC(7L)| < Zmax, 3)
Tmax, if z(n) > Tmax
(n) = 4 2 1 @)
i) = 1+ exp(—a-b(n))

where Tmax Was set to 0.8 times of the maximum magnitude of
the original far-end signal (n), b(n) = 1.5za(n) — 0.3x3(n),

and
4,
a =
0.5,

After that, the modified far-end signal is convolved with the ran-
domly chosen room impulse response (RIR), which was gener-
ated by using the image method [14]. Specifically, the set of
200 RIRs was generated for training, and two other sets of 2
RIRs were created for validation and test. When generating the
RIR, the specifications of Table 1 were randomly chosen. In
addition, the distance of the microphone-loudspeaker was set to
1m, and the length of the RIR was fixed to 512.

To create the train and validation mixtures, the near-end
speech and the acoustic echo were mixed at five different signal-
to-echo ratio (SER) levels (i.e., {—6,—3,0, 3,6} dB). Further-
more, the noise was randomly cut and mixed with the near-
end signal at four different signal-to-noise ratio (SNR) levels

if b(n) >0,
otherwise

(&)
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Table 1: Specifications for generating RIR.

| Specifications | Parameters l
Room size
(mxcmxmy | (46810} x{5,7,9,11,13} x {3}
Reverberation
time TGO (S) { 02, 03, 04 }

(i-e., {8,10,12,14} dB). For testing, three different SERs (i.e.,
{-1.5,1,5,4.5} dB) and SNRs (i.e., {11,13,15} dB) were
used to test the performance of the proposed approach under
the mismatch conditions. Furthermore, 10 types of seen noises
(i.e., bus, cafe, car, construction, kids, metro, office, railroad,
restaurant, street noises) were used from the ITU-T recommen-
dation P. 501 database [15] for train and validation, and 7 types
of unseen noises (i.e., babble, bucaneerl, destroyer engine, f16,
leopard, volvo, and white noises) were used from the NOISEX-
92 database [16] for test.

Finally, the performance of the proposed attention Wave-
U-Net was evaluated in terms of echo return loss enhancement
(ERLE) for the single talk period and perceptual evaluation of
speech quality (PESQ) for the double-talk period.

4.2. Experimental results

To verify the performance of the proposed attention Wave-U-
Net, we considered the following the STFT domain and time-
domain based algorithms: i) stacked DNN [3] and CRN [7] for
the STFT domain based model, and ii) Wave-U-Net [9], mod-
ified for the AEC problem, for the time-domain based model.
In the CRN, the near-end speech detector can be employed as
proposed in [7]; however, in this experiment, the CRN model
was used only since it exhibited the better PESQ performance
during the double-talk period than the CRN with the near-end
detector as described in [7]. For the STFT domain based mod-
els, the frame size was set to 320 in the stacked DNN [3] as sug-
gested, and 640 in the CRN [7] for the better performance. For
the time-domain based models (i.e., the Wave-U-Net and pro-
posed attention Wave-U-Net), the frame size was set to 16384
as recommended in [9]. All models were trained by using Adam
optimizer with 51 = 0.9 and 52 = 0.999, but with a tuned
learning rate for each algorithm. Training was performed until
the validation loss stops improving for 20 epochs.

The PESQ and ERLE performances under various SER
conditions are listed in Table 2 for both seen and unseen noise
conditions. Note that each figure of Table 2 was obtained by av-
eraging the results of various SNR conditions (i.e., {11,13,15}
dB). Compared with the STFT domain based methods [3, 7],
the time-domain based methods (i.e., the Wave-U-Net [9] and
proposed approach) performed better in terms of both ERLE
and PSEQ. Furthermore, we can see from Table 2 that the time-
domain approaches including the proposed method yielded a
similar performance on both seen and unseen noise condi-
tions while the STFT domain based algorithms, especially the
stacked DNN [3], experienced a performance degradation on
unseen noise condition, which reveals the robustness of the
time-domain based algorithms against the unseen noise condi-
tion. When compared with the original Wave-U-Net with no at-
tention mechanism, the proposed approach achieved better per-
formance during both the single-talk and double-talk periods.
Especially, the proposed approach effectively removes the echo
from the mixture through the attention network, which leads to



Table 2: PESQ and ERLE performance for seen and unseen noise.

Noise Type Seen Unseen
SER -1.5dB 1.5dB 45dB -15dB 1.5dB 45dB
unprocessed PESQ 1.07 1.31 1.56 1.08 1.32 1.57
ERLE 32.40 3413 35.62 2581 25.13 2412
stacked DNN 3] |—ppe 204 246 2.65 218 238 2.56
CRN [7] ERLE 29.93 2831 2638 29.04 27.00 24.64
PESQ 244 257 267 239 251 2.60
ERLE 40.87 39.92 3824 40.22 39.17 37.39
Wave-U-Net 9] —ppqs 2.59 274 236 258 273 284
Pronosed ERLE 220 a1.74 40.36 41.73 41.10 39.54
opose PESQ 2.65 2.81 2.92 2.64 2.78 2.88
E 5]
= :
< =
Time
(a)
3 | | | | | | | &
= =]
= Q
£ N' I' befo :
< £
Time
(©)
2 oy
2 T e 5
£ g
< [
Time
(e)
3 | | | | | | | &
= =]
= Q
£ ”' I' b :
< =
Time

(@

Figure 3: Waveforms and spectrograms under -1.5dB SER, 11dB SNR, and babble noise conditions. (a) mixture, (c) clean near-end
speech, (e) estimated near-end speech by the Wave-U-Net [9], and (g) estimated near-end speech by the proposed approach. (b), (d),

(f), and (h) show their respective spectrogram.

higher performance gain during the single-talk period than dur-
ing the double-talk period. Figure 3 depicts the waveforms and
spectrograms of the mixture, clean near-end speech, and esti-
mated near-end speeches by the Wave-U-Net and the proposed
approach on -1.5dB SER, 11dB SNR, and babble noise con-
ditions. Figure 3 also verifies the usefulness of the attention
mechanism, especially during the single-talk period (see a red
rectangular box in (e) and (f) of Figure 3).

5. Conclution

In this paper, a novel attention Wave-U-Net was proposed for
the AEC application. In the proposed approach, while the rel-
evant features of the far-end speech are extracted by the aux-
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iliary encoder and delivered by using the attention mechanism
into the Wave-U-Net, the Wave-U-Net can effectively suppress
the echo from the mixture with the properly extracted features.
Compared with the existing algorithms including the original
Wave-U-Net, the proposed attention Wave-U-Net achieved su-
perior performance for both single-talk and double-talk periods
under both seen and unseen noise conditions.
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