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Abstract
This paper presents a novel semi-blind source separation ap-
proach for speech dereverberation. Based on a time indepen-
dence assumption of the clean speech signals, direct sound and
late reverberation are treated as separate sources and are sepa-
rated using the auxiliary function based independent component
analysis (Aux-ICA) algorithm. We show that the dereverber-
ation performance is closely related to the underlying source
probability density prior and the proposed approach generalizes
to the popular weighted prediction error (WPE) algorithm, if the
direct sound follows a Gaussian distribution with time-varying
variances. The efficacy of the proposed approach is fully val-
idated by speech quality and speech recognition experiments
conducted on the REVERB Challenge dataset.
Index Terms: speech dereverberation, blind source separation,
REVERB challenge

1. Introduction
In many speech processing applications, the microphone signal
is degraded by reverberation. Reverberation is caused by the cu-
mulation of multiple reflections in the acoustic enclosure when
the signal travels from source to the sensor. The reverberant sig-
nal is often expressed as a linear convolution of the source sig-
nal and an acoustic impulse response (AIR) relating the source
pose and the microphone pose. A schematic illustration of an
AIR is provided in Figure 1. The AIR is divided into three
successive parts: the direct path sound as the first peak, fol-
lowed by early echos, and a collection of many reflected sounds
which is termed late reverberation. While early echos are found
beneficial for human perception and even for automatic speech
recognition (ASR), late reverberation is generally detrimental
and needs to be suppressed [1, 2].

Figure 1: Magnitude of an example acoustic impulse response
in time (ms).

Speech dereverberation algorithms in the literature broadly
fall into two categories, one based on spectral enhancement and
the other based on linear filtering. The first category of algo-
rithms design a varying spectral gain to be applied to the signal
spectrum based on, e.g. estimated late reverberation power [3],
coherent-to-diffuse ratio (CDR) [4], or pretrained deep neural

networks [5, 6]. The linear filtering based speech dereverbera-
tion algorithms include spatial beamforming approaches [7, 8],
Kalman filter based approaches [9] and multi-channel linear
prediction (MCLP) approaches [10, 11]. In the recent RE-
VERB Challenge [1] and CHiME challenges [12], an efficient
implementation of MCLP in the short time Fourier transform
(STFT) domain, often referred to as the weighted prediction er-
ror (WPE) algorithm [10], consistently improved distant speech
recognition accuracy and gained popularity over time [13, 14].

In [10], the reverberant signal is modeled as an auto-
regressive process and a delayed multi-channel linear predic-
tor is used to predict the desired clean speech. The predictor
is optimized under a maximum likelihood criterion assuming
that the direct sound follows a Gaussian distribution with time-
varying variances. It is claimed that the speech signal model or
source prior plays an essential part in the dereverberation per-
formance. Different speech signal models, e.g. Laplacian distri-
bution [15], complex generalized Gaussian distribution [16, 17],
and Student’s t-distribution [18] have later been investigated to
improve the performance of MCLP algorithms.

Speech dereverberation could alternatively be addressed
from a blind source separation perspective, as have been pro-
posed in the TRINICON [19] algorithm and in [20]. In [20],
speech dereverberation is taken as a sub-problem in a unified
source separation framework for joint dereverberation and echo
cancellation. Clean speech is separated from the echoed and
reverberant mixture based on independent component analy-
sis (ICA). This work could be further explored by considering
the later widely used auxiliary function based (Aux-)ICA ap-
proaches [21, 22]. Specifically, we propose an Aux-ICA solu-
tion to the speech dereverberation problem in this paper. Then,
for the first time, we mathematically relates the seemingly dif-
ferent source separation based dereverberation and the MCLP
based dereverberation algorithms, by applying the block matrix
inverse formula [23] on the proposed solution. Blind source
separation naturally relies on the underlying source probability
density function (PDF) and it is straightforward to see different
source priors leading to different dereverberation performance.
If a non-stationary Gaussian PDF is assumed for the desired
source, the proposed approach generalizes to the classical WPE
algorithm.

The reminder of this paper is organized as follows. Speech
dereverberation is reformulated as a semi-blind source separa-
tion problem in Section 2. The proposed Aux-ICA solution is
then presented in Section 3, along with its relation to previous
work and WPE. The experiments are in Section 4 and conclu-
sions are drawn in Section 5.

2. Problem formulation
Consider an acoustic scenario where a single speech source is
captured by M microphones. Let st,f denote the clean speech
signal in the STFT domain with time index t and frequency bin
index f . The reverberant signal observed at the m-th micro-
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phone can be represented using a convolutive transfer function
model as

xm,t,f =

Lh−1∑
τ=0

hm,τ,fst−τ,f + em,t,f (1)

where hm,τ,f with length Lh time frames models the frequency
domain transfer function between the speech source and the m-
th microphone, and em,t,f represents the modeling error and
ambient noise. As in [10], by assuming the addictive term
em,t,f = 0, the signal at an arbitrarily chosen microphone (e.g.
m = 1) can be written in the MCLP form as

xt,f = dt,f +

M∑
m=1

L−1∑
τ=0

a∗m,τ,fxm,t−4−τ,f (2)

where L is the order of the delayed multi-channel linear predic-
tor am,τ,f ,4 is the prediction delay and (·)∗ denotes conjugate.
The prediction delay is determined by the chosen boundary be-
tween the desired speech signal dt,f and late reverberation.

The signal model in (2) can be written in matrix notation as[
xt,f
x4,f

]
=

[
1 aHf
0 I

] [
dt,f
x4,f

]
(3)

where

x4,f = [x1,t−4,f , ..., x1,t−4−L+1,f , ...

xM,t−4,f , ..., xM,t−4−L+1,f ]
T (4)

is the vector of STFT samples delayed by4, 0 is a zero vector
of length ML, I is a unit matrix of order ML and

af = [a1,0,f , ..., a1,L−1,f , ...

aM,0,f , ..., aM,L−1,f , ...]
T (5)

is the MCLP prediction coefficient vector. (·)T denotes trans-
pose and (·)H denotes Hermitian transpose. Equation (3)
clearly represents a non-singular mixing process from the
source separation perspective, so the desired speech signal can
be separated from the observation vector as[

d̂t,f
x4,f

]
= Bf

[
xt,f
x4,f

]
(6)

where (̂·) denotes the estimate of a variable, and Bf is termed
the unmixing matrix.

Speech dereverberation is now reformulated by (3) and (6)
as a semi-blind source separation problem, since x4,f is al-
ready known. Furthermore, by assuming that {dt,f ,x4,f} are
mutually independent, the unmixing matrix Bf can be uniquely
determined by

Bf =

[
1 bHf
0 I

]
(7)

with

bf = [b1,0,f , ..., b1,L−1,f , ...

bM,0,f , ..., bM,L−1,f , ...]
T . (8)

The independence assumption is valid if {dt,f} are assumed
independent across time, and a proof of this independence ex-
change lemma can be found in [20].

3. The proposed approach
3.1. The Aux-ICA solution

To estimate the unmixing matrix, an independence measure is
firstly defined by employing the Kullback-Leibler divergence as

J(Bf ) =

∫
dt,f

∫
x4,f

p(dt,f ,x4,f ) log
p(dt,f ,x4,f )

q(dt,f ,x4,f )

= H(dt,f ) +H(x4,f )−H(dt,f ,x4,f )

= const.+ E[G(dt,f )]− log | detBf | (9)

where p(·) represents the source PDF, q(·) the product of ap-
proximated PDF of individual sources, H(·) the entropy func-
tion, and E[·] denotes the expectation operation. G(dt,f ) is
called the contrast function and has a relationship G(dt,f ) =
− log p(dt,f ).

Minimizing (9) is a nonlinear optimization problem. In the
auxiliary function technique, a functionQ(Bf ,Cf ) is designed
such that

J(Bf ) = min
Cf

Q(Bf ,Cf ). (10)

Then instead of directly minimizing the objective function
J(Bf ), the auxiliary function Q(Bf ,Cf ) is minimized in
terms of Bf and Cf , alternatively.

If we assume a general super-Gaussian PDF of the clean
speech signal, which requires that the contrast function G(r) is
continuous and G′(r)/r is monotonically decreasing in r ≥ 0,
with (·)′ denoting the derivative operator. Note that the speech
signal models introduced in [16, 18] all satisfy this assumption.
Then the following inequality

G(dt,f ) ≤
G′(r0)

2r0
|dt,f |2 +G(r0)−

r0G
′(r0)

2
(11)

holds for any dt,f and r0 [21]. The equality sign is satisfied
if and only if r0 = |dt,f |. On the basis of (11), we have the
auxiliary function

Q(Bf ,Cf ) =

ML+1∑
i=1

wH
i,fCi,fwi,f + const. (12)

where wH
i,f is the i-th row vector of Bf and the auxiliary vari-

able Ci,f is defined by

Ci,f = E[
G′(ri,t,f )

ri,t,f
xt,fx

H
t,f ] (13)

with xt,f = [xt,f ,x
T
4,f ]

T the observation vector and ri,t,f =

|wH
i,fxt,f | the i-th separated source.

For the semi-blind source separation task at hand, only the
first demixing row vector needs to be estimated. The update rule
is thus obtained by minimizing Q(Bf ,Cf ) in terms of w1,f as

w1,f = [BfC1,f ]
−1i1 (14)

w1,f ← w1,f/w1,f,1 (15)

where i1 = [1, 0, ..., 0]T is a ML + 1 dimensional vector and
w1,f is normalized with respect to its first element. (14) could
be further simplified as

w1,f = C−1
1,fB

−1
f i1

= C−1
1,f i1. (16)

Consequently, the proposed Aux-ICA solution consists of itera-
tively applying (13)(16)(15) and (6) in order until convergence.
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3.2. Relation to prior work

For now, the Aux-ICA solution for speech dereverberation
seems different from the MCLP based approaches, though they
are based on the same signal mode in (2). Their relationship is
firstly revealed as in the following.

Rewrite the auxiliary variable C1,f in block form as

C1,f =

[
c11 rH4,f
r4,f R4,f

]
(17)

where

R4,f = E[
G′(r)

r
x4,fx

H
4,f ],

r4,f = E[
G′(r)

r
x4,fx

∗
t,f ]. (18)

Then apply block matrix inversion

C−1 =

[
(c11 − rHR−1r)−1

−R−1r(c11 − rHR−1r)−1

−(c11 − rHR−1r)−1rHR−1

R−1 +R−1r(c11 − rHR−1r)−1rHR−1

]
. (19)

And by taking (19) into (16) and (15), we have the demixing
coefficients

bf = −R−1
4,fr4,f (20)

while the separated desired source is given by

d̂t,f = xt,f + bHf x4,f . (21)

The consequent solution now consists of applying (18)(20)
and (21) iteratively until convergence, the same as in the MCLP
approaches [10, 11], but different in the correlation weighting
factor, which is determined by the underlying source prior. If
the speech signal follows a non-stationary Gaussian PDF as in
the WPE algorithm [10]

p(dt,f ) ∼ NC(dt,f ; 0, λt,f ) ∝ exp(−|dt,f |
2

λt,f
), (22)

then we get G′(r)/r = 1/λt,f with λt,f the time-varying vari-
ance. Here the Aux-ICA solution and WPE turns out equivalent
only mathematically, because (22) is not super-Gaussian.

The auxiliary function technique was once applied in [11]
to derive a generalized WPE algorithm, but under a different
measure called the Hadamard-Fischer mutual correlation, as-
suming a clean speech signal has auto-correlation coefficients
of nearly zero for time lags larger than tens of milliseconds.
The mathematical equivalence derived here is not too surpris-
ing, given the auxiliary function technique turns both the origi-
nal objective functions in [11] and (9) into quadratic forms that
depends on the second-order statistics of the observed signal.
Nevertheless, the Aux-ICA solution highlights the roll of sta-
tistical modeling of speech, which has been persistently studied
in the literature [24, 25], and has recently been found important
also in echo cancellation [26] and beamforming [27].

We consider one unified contrast function

G(dt,f ) = (
dt,f
η

)β (23)

which covers most speech signal models in the literature, with
η > 0 and 0 < β ≤ 2 the scaling and shape parameters.
A choice of β ∈ [0.2, 0.4] is suggested for speech separation
tasks [25].

4. Experiments
Speech dereverberation experiments are conducted on the the
REVERB Challenge dataset [1]. The scenario is listening to a
single stationary distant-talking speaker in reverberant rooms.
The SimuData test set includes three typical reverberant condi-
tions: a small room, a medium-size room and a large-size room
with RT60 0.25s, 0.5s, and 0.7s respectively. Clean utterances
are convolved with measured AIRs at two source-microphone
distances (near = 0.5m and far = 2.0m). Real-recorded back-
ground noise is then added to the simulated data at signal-to-
noise ratio (SNR) of 20dB. The RealData test set is collected
in a different meeting room with reverberation time of 0.7s,
where source-microphone distances are set at approximated
1.0m (near) and 2.5m (far). All the utterances are provided with
1-channel (1ch), 2-channel (2ch) and 8-channel (8ch) formats.

The proposed Aux-ICA speech dereverberation algorithm
is evaluated with typical contrast function parameters η = 1 and
β = 0.2, 0.4, 1 in (22). STFT is performed in 512 length and
128 samples shift. The MCLP signal model parameters are set
4 = 3 and L = 10, following that of WPE optimized on this
dataset 1. Both the Aux-ICA algorithm and the baseline WPE
algorithm perform utterance-based processing for 5 iterations.

4.1. Quality evaluation

Several objective measures, including cepstrum distance, log
likelihood ratio, frequency-weighted segmental SNR, and
speech-to-reverberation modulation energy ratio (SRMR) [28]
are recommended for objective evaluation in the challenge. The
SRMR scores are finally reported in Table 1, for its strong cor-
relation to the dereverberation task at hand.

Compared with the unprocessed recordings, SRMR gains
are observed on all the processed data. The best gains are re-
spectively 0.41 dB, 0.96 dB and 1.92 dB on the 1ch, 2ch and 8ch
RealData. The capability of the speech dereverberation algo-
rithms clearly increases as more microphones are available. For
each room, higher gains are achieved in the far-distance cases
than that in the near-distance cases. The objective scores as-
suming different source PDF shape parameters are close. Nev-
ertheless, the choice of β = 0.4 gives the best results on all the
real datasets and most of the simulated datasets, which extends
the argument made specifically for speech separation in [25] to
speech dereverberation tasks.

4.2. Recognition evaluation

A state-of-the-art speech recognition system is built up using
time delay neural networks (TDNNs) for acoustic modeling.
The word error rates (WERs) are summarized in Table 2.

There exist clear gaps between the results on SimData and
that on RealData. On the simulated data, the difference between
assuming different source priors are not significant. In the fol-
lowing analysis, we focus on the RealData part, which is more
indicative of the real performance of the evaluated algorithms.
The Aux-ICA based speech dereverberation algorithm shows
superiority on the 1ch and 2ch test cases, on average reducing
the WER from 19.41% to 16.90% and 15.90%, respectively.
While on the 8ch RealData, the vanilla WPE algorithm per-
forms best and the error rate differences are 0.09% and 0.44%
compared with the Aux-ICA (β = 0.2) algorithm. Checking
again with the speech quality tests, the general trend is that
higher SRMR scores relate to lower recognition errors.

1The WPE implementation and the speech recognition pipeline are
available at https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb/s5

3927



Table 1: SRMR scores under different source probability density function assumptions. Bold figures indicates the best performance in
each test condition.

SimData RealData
Room1 Room2 Room3 Room1

Near Far Near Far Near Far Ave. Near Far Ave.
Unproc. 4.50 4.58 3.74 2.97 3.57 2.73 3.68 3.17 3.19 3.18
WPE 4.62 4.84 3.99 3.20 3.85 2.89 3.90 3.43 3.51 3.47

1ch Aux-ICA, β = 0.2 4.65 4.91 4.07 3.30 3.95 2.94 3.97 3.49 3.60 3.55
Aux-ICA, β = 0.4 4.66 4.95 4.13 3.39 4.03 2.99 4.03 3.52 3.65 3.59
Aux-ICA, β = 1.0 4.54 4.77 4.08 3.41 4.01 2.95 3.96 3.37 3.56 3.47
WPE 4.72 5.18 4.31 3.93 4.24 3.36 4.29 3.89 4.08 3.99

2ch Aux-ICA, β = 0.2 4.73 5.20 4.35 4.12 4.31 3.46 4.36 3.97 4.20 4.09
Aux-ICA, β = 0.4 4.72 5.18 4.36 4.27 4.34 3.53 4.40 4.00 4.27 4.14
Aux-ICA, β = 1.0 4.56 4.94 4.26 4.40 4.26 3.55 4.33 3.80 4.18 3.99
WPE 4.74 5.19 4.51 5.29 4.63 4.73 4.85 4.85 5.24 5.05

8ch Aux-ICA, β = 0.2 4.67 5.24 4.47 5.19 4.54 4.55 4.78 4.71 5.12 4.92
Aux-ICA, β = 0.4 4.72 5.14 4.50 5.34 4.62 4.75 4.85 4.86 5.33 5.10
Aux-ICA, β = 1.0 4.40 4.96 4.28 5.09 4.37 4.55 4.61 4.50 5.02 4.76

Table 2: The evaluation set WERs (%) on the baseline TDNN speech recognition system. Bold figures indicates the best performance
in each test condition.

SimData RealData
Room1 Room2 Room3 Room1

Near Far Near Far Near Far Ave. Near Far Ave.
Unproc. 3.08 3.78 4.64 7.31 4.36 7.09 5.04 18.59 20.22 19.41
WPE 3.08 3.49 4.45 6.83 4.29 6.63 4.80 16.83 18.47 17.65

1ch Aux-ICA, β = 0.2 3.08 3.44 4.40 6.70 4.26 6.37 4.71 16.16 17.93 17.05
Aux-ICA, β = 0.4 3.15 3.47 4.40 6.54 4.35 6.34 4.71 16.00 17.79 16.90
Aux-ICA, β = 1.0 3.17 3.35 4.58 6.62 4.35 6.51 4.76 15.62 18.43 17.03
WPE 3.50 3.50 4.59 6.17 4.23 6.17 4.69 15.81 16.78 16.30

2ch Aux-ICA, β = 0.2 3.17 3.50 4.66 6.10 4.26 6.17 4.64 15.55 16.24 15.90
Aux-ICA, β = 0.4 3.22 3.54 4.64 6.34 4.23 6.24 4.70 15.75 16.85 16.30
Aux-ICA, β = 1.0 3.27 3.50 4.51 6.47 4.21 6.66 4.77 15.78 17.05 16.42
WPE 3.19 3.57 4.41 5.11 3.57 3.92 3.96 12.62 13.27 12.95

8ch Aux-ICA, β = 0.2 3.14 3.59 4.36 5.06 3.53 3.97 3.94 12.71 13.71 13.21
Aux-ICA, β = 0.4 3.14 3.52 4.46 5.08 3.51 4.06 3.96 13.22 13.94 13.58
Aux-ICA, β = 1.0 3.18 3.45 4.46 5.14 3.67 4.08 4.00 13.77 14.72 14.25

5. Conclusions
This paper gives some new insights into speech dereverberation
by addressing it from a semi-blind source separation perspec-
tive, assuming that clean speech are independent across time. A
novel Aux-ICA based solution is proposed under the indepen-
dence maximization measure, and the proposed solution turns
out mathematically equivalent with the popular MCLP algo-
rithms. Our work highlights the role of accurate speech mod-
eling, and a super-Gaussian source prior with shape parameter
β ∈ [0.2, 0.4] not only applies to speech separation but also
works in the speech dereverberation tasks.
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