
Bunched LPCNet : Vocoder for Low-cost Neural Text-To-Speech Systems

Ravichander Vipperla1†, Sangjun Park2†, Kihyun Choo2†, Samin Ishtiaq1, Kyoungbo Min2

Sourav Bhattacharya1, Abhinav Mehrotra1, Alberto Gil C. P. Ramos1, Nicholas D. Lane1,3

1Samsung AI Centre, Cambridge, UK
2Samsung Research, Seoul, Republic of Korea

3University of Cambridge, UK
{r.vipperla, sj0.park, khchoo, s.ishtiaq, kyoungbo.min,

sourav.b1, a.mehrotra1, a.gilramos, nic.lane}@samsung.com

Abstract

LPCNet is an efficient vocoder that combines linear pre-
diction and deep neural network modules to keep the computa-
tional complexity low. In this work, we present two techniques
to further reduce it’s complexity, aiming for a low-cost LPC-
Net vocoder-based neural Text-to-Speech (TTS) System. These
techniques are: 1) Sample-bunching, which allows LPCNet to
generate more than one audio sample per inference; and 2) Bit-
bunching, which reduces the computations in the final layer of
LPCNet. With the proposed bunching techniques, LPCNet, in
conjunction with a Deep Convolutional TTS (DCTTS) acoustic
model, shows a 2.19x improvement over the baseline run-time
when running on a mobile device, with a less than 0.1 decrease
in TTS mean opinion score (MOS).
Index Terms: Neural Text-to-Speech, vocoder, LPCNet, Sam-
ple Bunching, Bit Bunching

1. Introduction
LPCNet [1] is a state-of-the-art light-weight vocoder that im-
proves upon WaveRNN [2] in terms of sound quality and infer-
ence time. Its design is based on the principles of source-filter
model [3] of speech production. The key idea in LPCNet is to
separate the burden of vocal tract response prediction using a
well-understood, low-cost, linear prediction filter and utilize a
smaller, WaveRNN-style neural net’s capacity for the predic-
tion of source excitation in order to reconstruct the speech. It
is one of the most compute efficient neural vocoders in recent
times and has been demonstrated to give excellent performance
when used in text-to-speech systems [4, 5] as well as in speech
codecs [6]. Due to its small size and low computational com-
plexity, it is well suited as the vocoder component for commer-
cial on-device TTS solutions for mobile and IoT devices. An
auto-regressive vocoder in a TTS system is the biggest com-
putational bottleneck as it infers speech samples one at a time
conditioned on the previously generated samples. For a wide-
band speech signal generation at 16 KHz or 24 KHz, even an
efficient LPCNet implementation accounts for 80 to 90% of the
total computational cost, the rest accounted for by the NLP and
acoustic modeling components that generate the input for the
vocoder.

In this paper we address the problem of reducing the com-
putational complexity of LPCNet without sacrificing the syn-
thesized audio quality. Our contributions include two methods:
1) Sample bunching where the architecture of the LPCNet has
been modified to generate more than one sample per inference

† equal contribution

and 2) Bit bunching where the final, softmax layer is segregated
into two bunches to reduce the layer size and computations.

We present a brief overview of LPCNet in Section 2, fol-
lowed by in-depth description of the sample and bit bunching
techniques in Sections 3 and 4 respectively. Evaluation results
highlighting the efficacy of the proposed methods are presented
in Section 5.

2. LPCNet overview

Figure 1: LPCNet overview

LPCNet, as depicted in Figure 1, keeps the computa-
tional complexity low by using an all-pole LPC filter (M co-
efficients) [7] for modeling the vocal tract response and a small
neural network for predicting the excitation signals. It com-
prises a frame rate network (FRN) that runs once per input
frame, and a sample rate network (SRN) that runs N (frame
size) times per frame generating one audio sample per infer-
ence. As a result, most of the computational burden resides in
the SRN.

The SRN comprises two gated recurrent units (GRU) and
one dual fully-connected (dual FC) layer leading to a softmax
layer that models the probability distribution of the excitation
signal. The excitation signal et is sampled from this distribu-
tion and combined with the prediction pt from the LPC filter to
generate the audio sample st. The excitation and speech sam-
ple from the previous time step along with the prediction for
the current time step are fed as input to the SRN via embedded
representations.
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Weight sparsification [2] applied to the recurrent weight
matrix in GRUA can reduce the complexity without quality
degradation. Notably, in GRUA, while the complexity of the
input weight matrix U is larger than that of the recurrent weight
matrix W , matrix-vector multiplications of U with the em-
bedding vectors from p, s and e are converted into addition
operations using pre-computed lookup tables obtained from
multiplication of the embedding tables and the corresponding
weights. With these optimizations, LPCNet shows high perfor-
mance with much lower complexity as compared to other auto-
regressive (AR) neural vocoders [2, 8].

We note that within the SRN, the two GRU units and the
dual FC layer account for about 85% and 15% of the compu-
tations respectively. The two proposed techniques, sampling
bunching and bit bunching, target reducing computations in
these blocks respectively.

3. Sample bunching
The key idea with sample bunching is to get the SRN to generate
more than one sample (called a bunch herewith) per inference
thereby allowing it to run fewer times resulting in a reduction
of computational cost.

The concept of generating multiple samples has been tried
in the context of non-autoregressive vocoders [9, 10, 11, 12, 13]
via parallel inference on GPUs. Such models do not scale well
for CPU processing. In AR vocoders, parallel sample genera-
tion is challenging due to the dependence of current inference
on past output. SampleRNN [14], an efficient AR model, uses
different clock rates for higher and lower layers in the network
to increase throughput. In recently proposed Gaussian LPC-
Net [15], two samples are generated per inference by assuming
independence for these samples. In order to maintain the quality
of output, the capacity of RNN was increased in that work.

In our approach described below, we maintain the auto-
regressive nature of LPCNet in conditioning the current output
on past outputs and thereby enabling the maintenance of audio
quality beyond bunch size of 2. Our approach allows multi-
sample generation on any hardware including low-end CPUs.

Figure 2: Sample bunching

Our proposition is that the GRUs in the SRN have suffi-
cient model capacity to generate a bunch of samples. As seen
in Figure 2, the SRN shares the GRU layers for all the samples
in the bunch and has an individual dual FC layer for each exci-

tation prediction in the bunch. The input to the dual FC layer
for the first excitation is conditioned only on the output from
GRUB, êt ∼ p(et|c); while for the rest, it is also conditioned on
the previous excitations within the bunch via embedding feeds,
êt+k ∼ p(et+k|c, êt, ..., êt+k−1).

While the number of iterations for the SRN is reduced by
the bunch size S, the inputs to GRUA increase linearly with S
resulting in larger input matrix U in GRUA. However, using
the lookup table implementation as described in Section 2, this
increase in cost is marginal and the overall gain in computations
with sample bunching is proportional to 1/S.

4. Bit bunching
LPCNet [1] uses a Dual FC layer with a softmax activation layer
of size 256 for computing the probability p(et). Each softmax
output node corresponds to a quantized level of the signal in
8-bits µ-law representation. Inspired by the dual softmax layer
in WaveRNN [2], we introduce the idea of bit bunching for this
layer to optimize the inference speed further in conjunction with
sample bunching.

Modifying the Dual FC layer to split 8 bits into two separate
groups, higher bit and lower bit bunches, results in two smaller
output layers and thereby gains in computational complexity.
Our bit bunching approach also uses a new scaled µ-law quan-
tization to allow higher number of bits for better quality signal.

Figure 3: Bit bunching

The idea of bit bunching is depicted in Figure 3. With bit
bunching, the input information into the Dual FC layer is not
changed from the original LPCNet, i.e., the information for
predicting probability p(et) remains the same. The higher bit
bunch and lower bit bunch outputs map to a coarse prediction
and fine correction of the excitation signal respectively. To im-
prove the prediction efficacy of the lower bits, the higher bit
predictions are additionally fed in as conditioning input via em-
bedding layer. In our experiments, this additional conditioning
was found to be useful in improving the cross-entropy loss for
the lower-bit bunch and also assisted in the choice of number
of bits to assign for higher-bit bunch. The best cross entropy
error was achieved with a split of B = (Bh, Bl) = (7, 4)
where Bh and Bl denote the number of bits in higher bit and
lower bit bunches respectively, and this split has been used
in all further experimentation. From the higher and lower bit
bunch predictions êht and êlt, the excitation signal is calculated
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Algorithm 1: Audio sample generation with sample
and bit bunching

Input: Samples, excitations and predictions from
previous run of SRN ŝt−S : ŝt−1 , êt−S : êt−1

and p̂t−S+1 : p̂t respectively
Output: ŝt : ŝt+S−1 , êt : êt+S−1 and p̂t+1 : p̂t+S

1 c← GRUB(f,GRUA(f,Embedding(Input)))
2 cht = c
3 for i← 0 to S − 1 do
4 êht+i ← sampling from p(eht+i|cht+i)

5 clt+i ← cht+i + Embedding(êht+i)

6 êlt+i ← sampling from p(elt+i|clt+i)

7 êt+i ← 2Bl êht+i + êlt+i

8 cht+i+1 ← cht+i + Embedding(êt+i)

9 end
10 for i← 0 to S − 1 do
11 ŝt+i ← êt+i + p̂t+i

12 p̂t+i+1 ← compute prediction(ŝt+i−M−1 : ŝt+i)

13 end

as êt = ξ(êht , ê
l
t) = 2Bl êht + êlt. From the generated exci-

tations, the predictions and audio samples are computed with
sample and bit bunching according to Algorithm 1.

As in the LPCNet paper, we have employed µ-law quanti-
zation algorithm [16] to represent 16-bits PCM values x, where
−32768 ≤ x ≤ 32767. It is an efficient method which can
represent the waveform with B-bits as shown in (1).

y = QB(x) =sign(x) · Vm2 ·
ln(1 + s1|x|)

ln(Vm)

x = Q−1
B (y) =sign(u) · s2 ·

(
exp

ln(Vm)|u|
Vm2

− 1

)
where Vm =2B , Vm2 = 2B−1,

u =y − Vm2, s1 =
Vm − 1

215
, s2 =

215

Vm − 1

(1)

Vm = ws2
B (2)

Typically, most systems use it with B = 8, but with bit
bunching we consider cases with larger B. One downside with
B > 9 is that the quantization step size is smaller than 1 for val-
ues of x close to zero. For instance forB = 11,Q11(0) = 1024
and Q11(1) = 1032. This leads to under-utilization of quanti-
zation levels and also discrepancies due to many-to-one map-
ping from sampled quantization value to the PCM conversion.
To address this issue, we added a factor ws to control the slope
of the mapping function as represented in (2), and it was cho-
sen to keep the quantization step always greater than 1. For
instance, for B = 11, ws is set to 0.08 as shown in Figure 4.

5. Evaluation
5.1. Experimental environment

For high-fidelity TTS with low complexity, we made the fol-
lowing modifications to the original LPCNet configuration: (1)
For 24KHz sampling rate, 10 ms frame size (N : 240), 20 Bark
cepstral coefficients with 240 shift size and 480 window size
are used. (2) We used the RAPT algorithm [17] for pitch track-
ing. It showed the better performance in the LPCNet and in
generation of more natural prosody in the acoustic model. (3)

-30000 -20000 -10000 0 10000 20000 30000
PCM values

0

250

500

750

1000

1250

1500

1750

2000

Qu
an

tiz
ed

 v
al

ue
s

ws = 1.0

ws = 0.08

−3 −2 −1 0 1 2 3
1021

1022

1023

1024

1025

1026

1027

−3 −2 −1 0 1 2 3
1001
1008

1016

1024

1032

1040
1047

Figure 4: Mapping function of the modified µ-law quantization
with B = 11

We increased the sparse ratio of the recurrent weight matrix in
GRUA from (0.95, 0.95, 0.8) to (0.99, 0.99, 0.9). This way,
the overall complexity was reduced by about 25% with a sim-
ilar performance, and we employed this modified LPCNet as a
baseline system for all comparisons. The learning rate and de-
cay rate were determined by random search method [18] and
the other hyper-parameters were set identical to the original
LPCNet, i.e., GRUA with 384 units and GRU B with 16 units.
A total of 8 systems were evaluated with the sample bunch-
ing sizes S ∈ {1, 2, 3, 4} and the bit bunching configurations
B = (Bh, Bl) ∈ {(8, 0), (7, 4)}. Note that the system with
S = 1 and B = (8, 0) corresponds to the baseline system.
When B = (7, 4), the modified µ-law quantization was applied
with ws = 0.08.

A phoneme-based DCTTS [19] was employed as an acous-
tic model to evaluate TTS performance. The systems were
trained using two datasets, a professional English male speaker
(17-hours with 10,000 utterances) and a professional English fe-
male speaker (15-hours with 7,612 utterances). 110 utterances
were used as a test set, and one percent of the rest were held out
as validation set for training.

5.2. Complexity

We measured RTF (Real Time Factor) and CR (Complexity Ra-
tio) on two devices: 1) AWS c5.4xlarge instance - representative
of cloud deployment (Intel(R) Xeon(R) Platinum 8124M CPU
@ 3.00GHz) and 2) Samsung Galaxy S10+ (Exynos 9820) for
on-device deployment. The implementation was optimized us-
ing SIMD (Single Instruction Multiple Data) with single thread
for each architecture.

The RTFs and CRs summarized in Table 1 highlight the
improvements in computational complexity with sample and bit
bunching over the baseline : S = 1 and B = (8, 0). The
sample bunching algorithm with S = 4 achieves a reduction of
39.7% and 43.4% over the baseline on Intel Xeon and Exynos
respectively. Bit bunching helps in reducing the RTF further by
about 7% and 10% absolute on these devices. With S = 4 and
B = (7, 4), we get an overall improvement of 54.2%, i.e., it
runs 2.19 times faster than the baseline, on the mobile device.

Since we need one Dual FC layer computation per excita-
tion calculation even with sample bunching, it implies a con-
stant reduction in computations with bit bunching for all val-
ues of S. At higher sample bunching values, this accounts for
a larger proportion of savings, for e.g, relative gain with bit
bunching on Intel Xeon at baseline is 6.6% while at S = 4,
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Table 1: Real time factor and complexity ratio on the two CPU
architectures

S B
Intel Xeon Exynos 9820

RTF CR RTF CR

1
(8, 0) 0.136 100.0% 0.243 100.0%
(7, 4) 0.127 93.4% 0.214 88.3%

2
(8, 0) 0.098 72.1% 0.174 71.7%
(7, 4) 0.089 65.4% 0.149 61.2%

3
(8, 0) 0.087 64.0% 0.147 60.6%
(7, 4) 0.078 57.4% 0.124 51.2%

4
(8, 0) 0.082 60.3% 0.137 56.6%
(7, 4) 0.072 52.9% 0.111 45.8%

it results in 12.2% gain.
To verify the efficacy of the bunching approach in com-

plexity reduction, we compare the validation loss of the pro-
posed system and the baseline system with smaller GRUA units
MA in Figure 5. Sample bunching shows lower complexity for
the same validation loss. For example, (S = 1,MA = 288)
and (S = 3,MA = 384) with similar loss, 3.3854 and
3.3840, work 25.9% and 56.3% faster than the baseline system
(S = 1,MA = 384) respectively. It suggests that the proposed
approach is a more efficient method than reducing the units in
the RNN layers.
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Figure 5: Validation loss versus RTF (baseline systems with
varying MA and sample bunching systems)

5.3. Quality

For quality evaluation, we conducted a MOS (Mean Opinion
Score) test and a DMOS (differential MOS) test using the Ama-
zon Mechanical Turk platform on 11 systems including one
original speech as a high anchor, and two degraded ones gen-
erated by Griffin-Lim [20] and 5 bits µ-law quantization as low
anchors, with 100 people and 100 unseen test utterances. Each
listener rated 110 utterances, 10 utterances each for the 11 sys-
tems.

For the evaluation, we choose Degradation Category Rat-
ing (DCR) manners for Anal-Synth and Absolute Category Rat-
ing (ACR) manners for LPCNet+DCTTS test defined in ITU-T
P.800 [21], for precise analysis of the vocoder performance. In
the test, the subjects are requested to rate the amount of degra-
dation compared with given reference in case of Anal-Synth and

to rate absolute quality in the case of LPCNet+DCTTS. There
are 10 categories in our test [0.5, 5] with a step size of 0.5 and
a higher score corresponds to better quality. To remove non-
discriminative ratings, we applied a screening rule where results
were discarded if the original item scored lower than 4.0. The
results of Anal-Synth using the extracted features from original
speech and LPCNet+DCTTS using the predicted features from
the DCTTS are summarized in Tables 2 and 3 respectively1.

Table 2: DMOS scores with 95% confidence intervals

S B
Anal-Synth (DMOS)
male female

Original 4.62± 0.03 4.66± 0.03

1
(8, 0) 4.35± 0.06 4.40± 0.06
(7, 4) 4.32± 0.06 4.39± 0.06

2
(8, 0) 4.30± 0.06 4.30± 0.06
(7, 4) 4.25± 0.06 4.29± 0.06

3
(8, 0) 4.26± 0.06 4.25± 0.07
(7, 4) 4.18± 0.06 4.20± 0.06

4
(8, 0) 4.22± 0.06 4.09± 0.07
(7, 4) 4.16± 0.06 4.00± 0.07

Table 3: MOS scores with 95% confidence intervals

S B
LPCNet+DCTTS (MOS)

male female

Original 4.41± 0.03 4.44± 0.03

1
(8, 0) 4.08± 0.05 4.09± 0.05
(7, 4) 4.02± 0.05 4.10± 0.05

2
(8, 0) 4.05± 0.05 4.06± 0.05
(7, 4) 4.04± 0.05 4.06± 0.05

3
(8, 0) 4.01± 0.06 4.09± 0.05
(7, 4) 4.00± 0.05 4.06± 0.05

4
(8, 0) 4.01± 0.06 4.06± 0.05
(7, 4) 3.99± 0.05 4.03± 0.06

In the Anal-Synth case, it is confirmed that lower the
complexity, lower is the DMOS. Especially, DMOS decreases
rapidly when S = 4, which can be attributed to the insuffi-
cient capacity of GRUB. On the other hand, in the TTS case,
MOS degradation is insignificant, and the proposed method
with S = 4 and B = (7, 4), shows a less than 0.1 MOS drop
compared to the baseline. In fact, DCR test is more sensitive
than ACR and the difference according to the test methodology
shows up in the DMOS and MOS score of original utterance.

6. Conclusion
In this work, we have proposed sample and bit bunching tech-
niques to reduce the computational complexity of the LPCNet
vocoder. We have demonstrated that bunched-LPCNet can pro-
vide more than 2X speed-up over baseline with negligible loss
in quality. It is thus a strong proposition for use within a com-
mercial on-device TTS system for lower-spec mobile, IoT and
embedded devices.

1Audio samples available at https://bunchedlpcnet.
github.io/
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